Skip to main content
Log in

Reliability design of multibody systems using sample-based extreme value theory

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A multibody system can be modeled with multiple parameters such as mass, stiffness, damping, and length. Even though such parameters are frequently assumed to be deterministic, they are not because of various factors such as manufacturing tolerance, material irregularity, fatigue, and wear. Because the performance of a multibody system depends on its parameters, parameter uncertainties result in system performance uncertainty. Probability density functions (PDFs) of uncertain parameters can be identified based on their populations. In practical engineering problems, however, it is almost impossible to enumerate the populations of all parameters. Therefore in this study, we propose a sample-based reliability design method using an extreme value theory. The effectiveness and accuracy of the proposed method is validated with three explicit functions and two multibody systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Ulam, S., Richtmyer, R.D., Von Neumann, J.: Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS-551 (1947)

  2. Shinozuka, M.: Basic analysis of structural safety. J. Struct. Eng. 109(3), 721–740 (1983)

    Article  Google Scholar 

  3. Breitung, K.: Asymptotic approximations for multinormal integrals. J. Eng. Mech. 110(3), 357–366 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hasofer, A.M., Lind, N.C.: Exact and invariant second-moment code format. J. Eng. Mech. Div. 100(1), 111–121 (1974)

    Google Scholar 

  5. Seo, H.S., Kwak, B.M.: Efficient statistical tolerance analysis for general distribution using three-point information. Int. J. Prod. Res. 40(4), 931–944 (2002)

    Article  MATH  Google Scholar 

  6. Rahman, S., Xu, H.: A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probab. Eng. Mech. 19(4), 393–408 (2004)

    Article  Google Scholar 

  7. Youn, B.D., Zhimin, X., Wang, P.F.: Eigenvector dimension-reduction (EDR) method for sensitivity-free probability analysis. Struct. Multidiscip. Optim. 37(1), 13–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sandu, A., Sandu, C., Ahmadian, M.: Modeling multibody dynamic systems with uncertainties. Part I. Theoretical and computational aspects. Multibody Syst. Dyn. 23, 375–395 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Sandu, A., Sandu, C., Ahmadian, M.: Modeling multibody dynamic systems with uncertainties. Part II. Numerical applications. Multibody Syst. Dyn. 22, 241–262 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Naets, F., Tamarozzi, T., Desmet, W.: A system level model reduction approach for flexible multibody systems with parametric uncertainties. Proc. IUTAM. 13, 4–13 (2015)

    Article  Google Scholar 

  11. Kim, B.S., Eom, S.M., Yoo, H.H.: Design variable tolerance effects on the natural frequency variance of constrained multi-body systems in dynamic equilibrium. J. Sound Vib. 320, 545–558 (2009)

    Article  Google Scholar 

  12. Batou, A., Soize, C.: Rigid multibody system dynamics with uncertain rigid bodies. Multibody Syst. Dyn. 27, 285–319 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Batou, A., Soize, C., Choi, C.K., Yoo, H.H.: Robust design in multibody dynamics—application to vehicle ride-comfort optimization. Proc. IUTAM. 13, 90–97 (2015)

    Article  Google Scholar 

  14. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 108(2), 171–190 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948) and 623–659

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, R., Mahadevan, S.: Model uncertainty and Bayesian updating in reliability-based inspection. Struct. Saf. 22, 145–160 (2000)

    Article  Google Scholar 

  18. Youn, B.D., Wang, P.F.: Bayesian reliability-based design optimization using eigenvector dimension reduction (EDR) method. Struct. Multidiscip. Optim. 36, 107–123 (2008)

    Article  MathSciNet  Google Scholar 

  19. Castillo, E.: Extreme Value Theory in Engineering. Academic Press, New York (1988)

    MATH  Google Scholar 

  20. Rao, S.S.: Reliability-Based Design. McGraw-Hill, New York (1992)

    Google Scholar 

  21. Castillo, E., Hadi, A.S., Balakrishnan, N., Sarabia, J.M.: Extreme Value and Related Models with Applications in Engineering and Science. Wiley, New Jersey (2005)

    MATH  Google Scholar 

  22. Fisher, R., Tippett, L.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–190 (1928)

    Article  MATH  Google Scholar 

  23. Gnedenko, B.: Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423–453 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jenkinson, A.F.: The frequency distribution of the annual maximum (or minimum) of meteorological elements. Q. J. R. Meteorol. Soc. 81(348), 158–171 (1955)

    Article  Google Scholar 

  25. Prescott, P., Walden, A.T.: Maximum likelihood estimation of the parameters of the generalized extreme-value distribution. Biometrika. 67(3), 723–724 (1980)

    Article  MathSciNet  Google Scholar 

  26. Hosking, J.R.M.: L-moments: analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. B 52(1), 105–124 (1990)

    MathSciNet  MATH  Google Scholar 

  27. Madsen, H., Rasmussen, P.F., Rosbjerg, D.: Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events. 1. At-site modeling. Water Resour. Res. 33(4), 747–757 (1997)

    Article  Google Scholar 

  28. Hook, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J. ACM 8(2), 212–229 (1961)

    Article  MATH  Google Scholar 

  29. Lewis, R.M., Torczon, V.: A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds. SIAM J. Optim. 12(4), 1075–1089 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schiehlen, W., Eberhard, P.: Applied Dynamics. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  31. Choi, D.H., Park, J.H., Yoo, H.H.: Modal analysis of constrained multibody system undergoing rotational motion. J. Sound Vib. 280, 63–76 (2005)

    Article  Google Scholar 

  32. Griffin, M.: Vertical vibration of seated subject: effects of posture, vibration level and frequency. Aviat. Space Environ. Med. 46(3), 269–276 (1975)

    Google Scholar 

  33. Parsons, K., Griffin, M.: The effect of rotational vibration in roll and pitch axes on the discomfort of seated subjects. Ergonomics 21(8), 612–625 (1978)

    Article  Google Scholar 

  34. ISO: Mechanical vibration and shock evaluation of human exposure to whole body vibration, Part 1: General requirements. International Organization for Standardization ISO 2631-1, Geneva (1997)

Download references

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) of Korea (Grant number: NRF-2015R1A2A2A01003422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Hee Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, C.K., Batou, A. & Yoo, H.H. Reliability design of multibody systems using sample-based extreme value theory. Multibody Syst Dyn 37, 413–440 (2016). https://doi.org/10.1007/s11044-015-9482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9482-7

Keywords

Navigation