Skip to main content
Log in

Foot–ground contact modeling within human gait simulations: from Kelvin–Voigt to hyper-volumetric models

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This study describes the development of a multibody foot–ground contact model consisting of spherical volumetric models for the surfaces of the foot. The developed model is two-dimensional and consists of two segments, the hind-foot, mid-foot, and fore-foot as one rigid body and the phalanges collectively as the second rigid body. The model has four degrees of freedom: ankle \(x\) and \(y\), foot orientation, and metatarsal-phalangeal joint angle. Three different types of contact elements are targeted: Kelvin–Voigt, linear volumetric, and hyper-volumetric. The models are kinematically driven at the ankle and the metatarsal joints, and simulated horizontal and vertical ground reaction forces as well as center of pressure location are compared against experimental quantities acquired from barefoot measurements during a human gait cycle. Parameter identification is performed for finding optimal contact parameters and locations of the contact elements. The hyper-volumetric foot–ground contact model was found to be a suitable choice for foot/ground interaction modeling within human gait simulations; this model showed 75 % and 62 % improvement on the matching quality over the point contact and linear volumetric models, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aerts, P., Ker, R.F., De Clercq, D., Ilsley, D.W., Alexander, R.M.: The mechanical properties of the human heel pad: a paradox resolved. J. Biomech. 28(11), 1299–1308 (1995)

    Article  Google Scholar 

  2. Anderson, F.C., Pandy, M.G.: Dynamic optimization of human walking. J. Biomech. Eng. 123(5), 381–390 (2001)

    Article  Google Scholar 

  3. Bisseling, R.W., Hof, A.L.: Handling of impact forces in inverse dynamics. J. Biomech. 39(13), 2438–2444 (2006)

    Article  Google Scholar 

  4. Boos, M., McPhee, J.: Volumetric modeling and experimental validation of normal contact dynamic forces. J. Comput. Nonlinear Dyn. 8(2), 021006 (2013)

    Article  Google Scholar 

  5. Carson, M., Harrington, M., Thompson, N., O’Connor, J., Theologis, T.: Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis. J. Biomech. 34, 1299–1307 (2001)

    Article  Google Scholar 

  6. Cenk Güler, H., Berme, N., Simon, S.R.: A viscoelastic sphere model for the representation of plantar soft tissue during simulations. J. Biomech. 31(9), 847–853 (1998)

    Article  Google Scholar 

  7. Cole, G.K., Nigg, B.M., van den Bogert, A.J., Gerritsen, K.G.M.: Lower extremity joint loading during impact in running. Clin. Biomech. 11(4), 181–193 (1996)

    Article  Google Scholar 

  8. Dorn, T.W., Lin, Y.C., Pandy, M.G.: Estimates of muscle function in human gait depend on how foot–ground contact is modelled. Comput. Methods Biomech. Biomed. Eng. 15(6), 657–668 (2012)

    Article  Google Scholar 

  9. Erdemir, A., Piazza, S.J.: Changes in foot loading following plantar fasciotomy: a computer modeling study. J. Biomech. Eng. 126(2), 237–243 (2004)

    Article  Google Scholar 

  10. Geyer, H., Herr, H.: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)

    Article  Google Scholar 

  11. Gilchrist, L.A., Winter, D.A.: A two-part, viscoelastic foot model for use in gait simulations. J. Biomech. 29(6), 795–798 (1996)

    Article  Google Scholar 

  12. Gonthier, Y., McPhee, J., Lange, C., Piedboeuf, J.C.: A contact modeling method based on volumetric properties. In: ASME Conference Proceedings, vol. 2005, pp. 477–486 (2005)

    Google Scholar 

  13. Gonthier, Y., McPhee, J., Lange, C., Piedboeuf, J.C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11(3), 209–233 (2004)

    Article  MATH  Google Scholar 

  14. Hamner, S.R., Seth, A., Steele, K.M., Delp, S.L.: A rolling constraint reproduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait. J. Biomech. 46(10), 1772–1776 (2013)

    Article  Google Scholar 

  15. Holden, J.P., Orsini, J.A., Siegel, K.L., Kepple, T.M., Gerber, L.H., Stanhope, S.J.: Surface movement errors in shank kinematics and knee kinetics during gait. Gait Posture 5(3), 217–227 (1997)

    Article  Google Scholar 

  16. Hunt, K., Crossley, F.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 7, 440–445 (1975)

    Article  Google Scholar 

  17. Kecskemethy, A.: Integrating efficient kinematics in biomechanics of human motions. In: Procedia IUTAM, vol. 2, pp. 86–92 (2011)

    Google Scholar 

  18. Lopes, D.S.: Smooth convex surfaces for modeling and simulating multibody systems with compliant contact elements. Ph.D. Thesis, Instituto Superior Técnico, Universidade de Lisboa (2013)

  19. MATLAB: version 8.0 (R2012b). The MathWorks Inc., Natick, Massachusetts, USA (2012)

  20. Millard, M.: Mechanics and control of human balance. Ph.D. thesis, University of Waterloo, Canada (2011)

  21. Neptune, R.R., Wright, I.C., Den Bogert, A.J.V.: A method for numerical simulation of single limb ground contact events: application to heel-toe running. Comput. Methods Biomech. Biomed. Eng. 3(4), 321–334 (2000)

    Article  Google Scholar 

  22. Peasgood, M., Kubica, E., McPhee, J.: Stabilization of a dynamic walking gait simulation. J. Comput. Nonlinear Dyn. 2(1), 65–72 (2007)

    Article  Google Scholar 

  23. Petersen, W.: A volumetric contact model for planetary rover wheel/soil interaction. Ph.D. thesis, University of Waterloo, Canada (2012)

  24. Petersen, W., McPhee, J.: A nonlinear volumetric contact model for planetary rover wheel/soil interaction. In: ASME International Design Engineering Technical Conferences, Portland, USA (2013)

    Google Scholar 

  25. Sandhu, S., McPhee, J.: A two-dimensional nonlinear volumetric foot contact model. In: ASME International Mechanical Engineering Congress & Exposition, Vancouver, Canada (2010)

    Google Scholar 

  26. Scott, S.H., Winter, D.A.: Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking. J. Biomech. 26(9), 1091–1104 (1993)

    Article  Google Scholar 

  27. Shourijeh, M.S.: Optimal control and multibody dynamic modelling of human musculoskeletal systems. Ph.D. Thesis, University of Waterloo, Canada (2013)

  28. Shourijeh, M.S., McPhee, J.: Efficient hyper-volumetric contact dynamic modelling of the foot within human gait simulations. In: ASME International Design Engineering Technical Conferences, Portland, USA (2013). doi:10.1115/DETC2013-13446

    Google Scholar 

  29. Shourijeh, M.S., McPhee, J.: Forward dynamic optimization of human gait simulations: a global parameterization approach. J. Comput. Nonlinear Dyn. 9(3), 031018 (2014)

    Article  Google Scholar 

  30. Shourijeh, M.S., McPhee, J.: Optimal control and forward dynamics of human periodic motions using Fourier series for muscle excitation patterns. J. Comput. Nonlinear Dyn. 9(2), 021005 (2014)

    Article  Google Scholar 

  31. Srinivasan, S., Raptis, I., Westervelt, E.R.: Low-dimensional sagittal plane model of normal human walking. J. Biomech. Eng. 130(5), 051017 (2008)

    Article  Google Scholar 

  32. Lugris, U., Carlin, J., Pamies-Vila, R., Font-Llagunes, J.M., Cuadrado, J.: Solution methods for the double-support indeterminacy in human gait. Multibody Syst. Dyn. 30(3), 247–263 (2013)

    Article  MathSciNet  Google Scholar 

  33. Valiant, G.A.: A determination of the mechanical characteristics of the human heel pad in vivo. Ph.D. Thesis, The Pennsylvania State University, USA (1984)

  34. Vila, R.: Application of multibody dynamics techniques to the analysis of human gait. Ph.D. Thesis, Technical University of Catalonia, Spain (2012)

  35. Wang, J.M., Hamner, S.R., Delp, S.L., Koltun, V.: Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans. Graph. 31(4), 25 (2012)

    Google Scholar 

  36. Wilson, C., King, M.A., Yeadon, M.R.: Determination of subject-specific model parameters for visco-elastic elements. J. Biomech. 39(10), 1883–1890 (2006)

    Article  Google Scholar 

  37. Wojtyra, M.: Multibody simulation model of human walking. Mech. Based Des. Struct. Mach. 31(3), 357–379 (2003)

    Article  Google Scholar 

  38. Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking, part I: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16(3), 215–232 (2002)

    Article  Google Scholar 

  39. Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking, part II: lessons from dynamical simulations and clinical implications. Gait Posture 17(1), 1–17 (2003)

    Article  Google Scholar 

  40. Zhou, X., Draganich, L.F., Amirouche, F.: A dynamic model for simulating a trip and fall during gait. Med. Eng. Phys. 24(2), 121–127 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the ASME for granting the permission to reuse some of the text and figures of their previously published work [28]. We thank Mr. Michael Boos for providing us with the linear volumetric contact components in MapleSim. We also wish to thank the Human Movement Biomechanics Lab at the University of Ottawa for assistance with the data collection. The first author would like to thank Dr. Willem Petersen for the helpful discussion of the hyper-volumetric contact modeling approach. The authors also wish to acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad S. Shourijeh.

Appendix: Optimal contact parameters

Appendix: Optimal contact parameters

Optimal parameters of the three different contact models are presented here.

Table 2 Optimal contact parameters of the spring–damper elements: \(k_{S}\) is the spring stiffness, \(a_{S}\) is the pseudo-damping, \(L_{0}\) is the spring initial length, \(n_{S}\) is the nonlinearity exponent, \(\mu_{f}\) is the asymptotic friction coefficient, and \(v_{s}\) is a shape parameter for approximation of the dry Coulomb friction. Parameters \(dx\) and \(dy\) for characteristic points H, P, and T are expressed in local frames AH, AP, and PT, respectively
Table 3 Optimal contact parameters of the linear volumetric elements: \(k_{V}\) is the volumetric stiffness, \(a_{V}\) is the volumetric pseudo-damping, \(R_{V}\) is the radius of the sphere element, \(\mu_{f}\) is the asymptotic friction coefficient, \(v_{s}\) is a shape parameter for approximation of the dry Coulomb friction, and \(dx\) and \(dy\) are local coordinates of the optimal positions of contact elements
Table 4 Optimal contact parameters of the nonlinear volumetric elements: \(k_{h}\) is the nonlinear volumetric pseudo-stiffness, \(a_{h}\) is the nonlinear volumetric pseudo-damping, \(R_{V}\) is the radius of the sphere element, ℋ is the nonlinearity exponent of the volume, \(\mu_{f}\) is the asymptotic friction coefficient, \(v_{s}\) is a shape parameter for approximation of the dry Coulomb friction, and \(dx\) and \(dy\) are local coordinates of the optimal positions of contact elements

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shourijeh, M.S., McPhee, J. Foot–ground contact modeling within human gait simulations: from Kelvin–Voigt to hyper-volumetric models. Multibody Syst Dyn 35, 393–407 (2015). https://doi.org/10.1007/s11044-015-9467-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9467-6

Keywords

Navigation