Skip to main content
Log in

Investigation of the effects of human body stability on joint angles’ prediction

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Loosing stability control in elderly or paralyzed has motivated researchers to study how a stability control system works and how to determine its state at every time instant. Studying the stability of a human body is not only an important problem from a scientific viewpoint, but also finally leads to new designs of prostheses and orthoses and rehabilitation methods. Computer modeling enables researchers to study and describe the reactions and propose a suitable and optimized motion pattern to strengthen the neuromuscular system and helps a human body maintain its stability. A perturbation as a tilting is exposed to an underfoot plate of a musculoskeletal model of the body to study the stability. The studied model of a human body included four links and three degrees of freedom with eight muscles in the sagittal plane. Lagrangian dynamics was used for deriving equations of motion and muscles were modeled using Hill’s model. Using experimental data of joint trajectories for a human body under tilting perturbation, forward dynamics has been applied to predict joint trajectories and muscle activation. This study investigated the effects of stability on predicting body joints’ motion. A new stability function for a human body, based on the zero moment point, has been employed in a forward dynamics procedure using a direct collocation method. A multi-objective optimization based on genetic algorithm has been proposed to employ stability as a robotic objective function along with muscle stresses as a biological objective function. The obtained results for joints’ motion were compared to experimental data. The results show that, for this type of perturbations, muscle stresses are in conflict with body stability. This means that more body stability requires more stresses in muscles and reverse. Results also show the effects of the stability objective function in better prediction of joint trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Qu, X., Nussbaum, M.A., Madigan, M.L.: A balance control model of quiet upright stance based on an optimal control strategy. J. Biomech. 40, 3590–3597 (2007)

    Article  Google Scholar 

  2. Jacobs, R., Burleigh-Jacobs, A.: Neural Muscular Control Strategies in Postural Coordination. Springer, Berlin/Heidelberg/New York (1998)

    Google Scholar 

  3. van der Kooij, H., Jacobs, R., Koopman, B., Grootenboer, H.: A multisensory integration model of human stance control. Biol. Cybern. 80, 299–308 (1999)

    Article  MATH  Google Scholar 

  4. Allum, J.H., Adkin, A.L., Carpenter, M.G., Heldziolkowska, M., Honegger, F., Pierchala, K.: Trunk sway measures of postural stability during clinical balance tests: effects of a unilateral vestibular deficit. Gait Posture 14, 227–237 (2001)

    Article  Google Scholar 

  5. Le, C.K., Riach, C.: Postural stability measures: what to measure and for how long. Clin. Biomech. 11(3), 176–178 (1996)

    Article  Google Scholar 

  6. Shimizu, Y., Thurner, S., Ehrenberger, K.: Multifractal spectra as a measure of complexity in human posture. Fractals 10(1), 103–116 (2002)

    Article  Google Scholar 

  7. Winter, D.A.: Human balance and posture control during standing and walking. Gait Posture 3, 193–214 (1995)

    Article  Google Scholar 

  8. Matjacic, Z.: A multi-purpose rehabilitation frame: an apparatus for experimental investigations of human balance a postural control. J. Med. Eng. Technol. 24(6), 250–254 (2000)

    Article  Google Scholar 

  9. Nashner, L.M.: Fixed patterns of rapid postural responses among leg muscles during stance. Exp. Brain Res. 30, 13–24 (1977)

    Article  Google Scholar 

  10. Horak, F.B., Nashner, L.M.: Two distinct strategies for stance posture control: adaptation to altered support surface configurations. Neurosci. Abstr. 9, 65 (1983)

    Google Scholar 

  11. Kuo, A.D., Zajac, F.E.: Human standing posture: multi-joint movement strategies based on biomechanical constraints. Prog. Brain Res. 97, 349–358 (2000)

    Article  Google Scholar 

  12. Iqbal, K., Pai, Y.C.: Predicted region of stability for balance recovery: motion and the knee joint can improve termination of forward movement. J. Biomech. 33(12), 1619–1627 (2000)

    Article  Google Scholar 

  13. Henry, S.M., Fung, J., Horak, F.B.: Control of stance during lateral and anterior/posterior surface translations. IEEE Trans. Rehabil. Eng. 6(1), 32–42 (1998)

    Article  Google Scholar 

  14. Pai, Y.C., Iqbal, K.: Simulated movement termination for balance recovery: can movement strategies be sought to maintain stability even in the pressure of slipping or force sliding? J. Biomech. 32, 779–786 (1999)

    Article  Google Scholar 

  15. Consiglieri, L., Pires, E.B.: Analytical approach for the evaluation of the torques using inverse multibody dynamics. Multibody Syst. Dyn. 18, 471–483 (2007)

    Article  MATH  Google Scholar 

  16. Naderi, D., Pasha Zanoosi, A.A., Sadeghi-Mehr, M.: Forward dynamics simulation of human body under tilting perturbations. Commun. Nonlinear Sci. Numer. Simul. 17, 1055–1064 (2012)

    Article  Google Scholar 

  17. Xiang, Y., Arora, J.S., Rahmatalla, S., Bhatt, R., Marler, T., Abdel-Malek, K.: Human lifting simulation using multi-objective optimization approach. Multibody Syst. Dyn. 23(4), 431–451 (2009)

    Article  MathSciNet  Google Scholar 

  18. Zajaca, F.E., Neptunea, R.R., Kautza, S.A.: Biomechanics and muscle coordination of human walking: Part II: Lessons from dynamical simulations and clinical implications. Gait Posture 17, 1–17 (2003)

    Article  Google Scholar 

  19. Hurmuzlu, Y., Basdogan, C.: On the measurement of dynamic stability of human locomotion. J. Biomech. Eng. 116(1), 30–36 (1994)

    Article  Google Scholar 

  20. Yamasaki, T., Nomura, T., Sato, S.: Phase reset and dynamic stability during human gait. Biosystems 71(1–2), 221–232 (2003)

    Article  Google Scholar 

  21. Süptitz, F., Moreno Catalá, M., Brüggemann, G.-P., Karamanidis, K.: Dynamic stability control during perturbed walking can be assessed by a reduced kinematic model across the adult female lifespan. Hum. Mov. Sci. 32(6), 1404–1414 (2013)

    Article  Google Scholar 

  22. Chagdes, J.R., Rietdyk, S., Haddad Jeffrey, M., Zelaznik Howard, N., Raman, A.: Dynamic stability of a human standing on a balance board. J. Biomech. 46(15), 2593–2602 (2013)

    Article  Google Scholar 

  23. Beurskens, R., Wilken, J.M., Dingwell, J.B.: Dynamic stability of individuals with transtibial amputation walking in destabilizing environments. J. Biomech. 47(7), 1675–1681 (2014)

    Article  Google Scholar 

  24. McAndrew Young, P.M., Wilken, J.M., Dingwell, J.B.: Dynamic margins of stability during human walking in destabilizing environments. J. Biomech. 45(6), 1053–1059 (2012)

    Article  Google Scholar 

  25. McAndrew Younga, P.M., Dingwell, J.B.: Voluntarily changing step length or step width affects dynamic stability of human walking. Gait Posture 35(3), 472–477 (2012)

    Article  Google Scholar 

  26. Dingwell, J.B., Marin, L.C.: Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J. Biomech. 39(3), 444–452 (2006)

    Article  Google Scholar 

  27. Wilken, J.M., Dingwell, J.B., McAndrewa, P.M.: Dynamic stability of human walking in visually and mechanically destabilizing environments. J. Biomech. 44(4), 644–649 (2011)

    Article  Google Scholar 

  28. Dingwell, J.B., Kang, H.G., Marin, L.C.: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking. J. Biomech. 40(9), 1723–1730 (2007)

    Article  Google Scholar 

  29. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (2005)

    Google Scholar 

  30. Naderi, D., Miripour Fard, B., Sadeghi-Mehr, M.: Optimal prediction of human postural response under anterior–posterior platform tilting. Commun. Nonlinear Sci. Numer. Simul. 18, 99–108 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Garner, B.A., Pandy, M.G.: Estimation of musculotendon properties in the human upper limb. Ann. Biomech. Eng. 31, 207–220 (2003)

    Article  Google Scholar 

  32. Van Soest, A.J., Bobbert, M.F.: The contributions of muscle properties in the control of explosive movements. Biol. Cybern. 69(3), 195–204 (1993)

    Article  Google Scholar 

  33. Delp, S.L.: Surgery simulation: a computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb. Dissertation, Stanford University, CA, USA (1990)

  34. Van Mow, C., Huiskes, R.: Basic Orthopaedic Biomechanics and Mechano-Biology. Lippincott, Philadelphia (1997)

    Google Scholar 

  35. Millard, M., Uchida, T., Seth, A., Delp Scott, L.: Flexing computational muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135, 0210051–02100511 (2013)

    Article  Google Scholar 

  36. Steele, K.M., Seth, A., Hicks, J.L., Schwartz, M.S., Delp, S.L.: Muscle contributions to support and progression during single-limb stance in crouch gait. J. Biomech. 43, 2099–2105 (2010)

    Article  Google Scholar 

  37. Chand, T.J., Anderson, F.C., Higginson, J.S., Delp, S.L.: Stabilization of walking by intrinsic muscle properties revealed in a three-dimensional muscle-driven simulation. Comput. Methods Biomech. Biomed. Eng. 16, 451–462 (2013)

    Article  Google Scholar 

  38. Allison, A.S., Thelen, D.G., Schwartz, M.H., Anderson, F.C., Delp, S.L.: Muscular coordination of knee motion during the terminal swing phase of normal gait. J. Biomech. 40, 3314–3324 (2007)

    Article  Google Scholar 

  39. Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34, 153–161 (2001)

    Article  Google Scholar 

  40. Seth, A., Pandy, M.G.: A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. J. Biomech. 40, 356–366 (2007)

    Article  Google Scholar 

  41. Lim, Y.P., Lin, Y.-C., Pandy, M.G.: Muscle function during gait is invariant to age when walking speed is controlled. Gait Posture 38, 253–259 (2013)

    Article  Google Scholar 

  42. Anderson, F.C., Pandy, M.G.: Individual muscle contributions to support in normal walking. Gait Posture 17, 159–169 (2003)

    Article  Google Scholar 

  43. Pandy, M.G., Anderson, F.C.: Dynamic optimization of human gait. J. Biomech. 31, 115 (1998)

    Article  Google Scholar 

  44. Anderson, F.C., Ziegler, J.M., Pandy, M.G., Whalen, R.T.: Dynamic optimization of large-scale musculoskeletal systems. J. Biomech. 27, 773 (1994)

    Article  Google Scholar 

  45. Yamaguchi, G.T., Pandy, M.G., Zajac, F.E.: Dynamic musculoskeletal models of human locomotion: perspectives on model formulation and control. Adv. Psychol. 78, 205–240 (1991)

    Article  Google Scholar 

  46. Damsgaard, M., Rasmussen, J., Turholm Christensen, S., Surma, E., de Zee, M.: Analysis of musculoskeletal systems in the AnyBody modeling system. Simul. Model. Pract. Theory 14, 1100–1111 (2006)

    Article  Google Scholar 

  47. Schiehlen, W., García-Vallejo, D.: Walking dynamics from mechanism models to parameter optimization. Proc. IUTAM 2, 199–211 (2011)

    Article  Google Scholar 

  48. Seth, A., Sherman, M., Reinbolt, J.A., Delp, S.L.: OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Proc. IUTAM 2, 212–232 (2011)

    Article  Google Scholar 

  49. Sherman, M.A., Seth, A., Delp, S.L.: Simbody: multibody dynamics for biomedical research. Proc. IUTAM 2, 241–261 (2011)

    Article  Google Scholar 

  50. Mansouri, M., Reinbolt, J.A.: A platform for dynamic simulation and control of movement based on OpenSim and MATLAB. J. Biomech. 45, 1517–1521 (2012)

    Article  Google Scholar 

  51. Reinbolt, J.A., Seth, A., Delp, S.L.: Simulation of human movement: applications using OpenSim. Proc. IUTAM 2, 186–198 (2011)

    Article  Google Scholar 

  52. Yamaguchi, G.T., Moran, D.W., Si, J.: A computationally efficient method for solving the redundant problem in biomechanics. J. Biomech. 28, 999–1005 (1995)

    Article  Google Scholar 

  53. Schiehlen, W.: Advanced Multibody System Dynamics: Simulation and Software Tools. Kluwer, Norwell (1993)

    Book  MATH  Google Scholar 

  54. Schiehlen, W.: Multibody Systems Handbook. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  55. Haug, E.: Computer Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods. Allyn and Bacon, Boston (1989)

    Google Scholar 

  56. Hardt, M.W., von Stryk, O.: Dynamic modeling in the simulation, optimization and control of bipedal and quadrupedal robots. Z. Angew. Math. Mech. 83(10), 648–662 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  57. Von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37, 357–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  58. Zlatnik, D.: Intelligently controlled above knee prosthesis. PhD thesis, ETH, Zurich (1998)

  59. Hatze, H.: The complete optimization of a human motion. Math. Biosci. 28, 99–135 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  60. Gilchrist, L., Winter, D.: A two-part, viscoelastic foot model for use in gait simulations. J. Biomech. 29(6), 795–798 (1996)

    Article  Google Scholar 

  61. Anderson, F.C., Pandy, M.G.: A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2, 201–231 (1999)

    Article  Google Scholar 

  62. Neptune, R.R., Hull, M.L.: A theoretical analysis of preferred pedaling rate selection in endurance cycling. J. Biomech. 32, 409–415 (1999)

    Article  Google Scholar 

  63. von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37, 357–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  64. Betts, J.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  65. Fujimoto, Y., Kawamura, A.: Simulation of an autonomous biped walking robot including environmental force interaction. IEEE Robot. Autom. Mag. 5(2), 33–42 (1998)

    Article  Google Scholar 

  66. Hardt, M., von Stryk, O.: The role of motion dynamics in the design, control and stability of bipedal and quadrupedal robots. In: Proc. RoboCup 2002 International Symposium, Fukuoka, Japan (2002)

    Google Scholar 

  67. Vukobratovic, M., Juricic, D.: Contributions to the synthesis of biped gait. IEEE Trans. Biomed. Eng. 16, 1–6 (1969)

    Article  Google Scholar 

  68. Hemami, H., Golliday, C.L.: The inverted pendulum and biped stability. Math. Biosci. 34, 95–110 (1977)

    Article  Google Scholar 

  69. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of the Honda humanoid robot. In: Proc. of the IEEE Conf. on Robot. and Automata. IEEE, Washington (1998)

    Google Scholar 

  70. Li, Q., Takanishi, A., Kato, I.: Learning control for a biped walking robot with a trunk. In: Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robot and Sys, pp. 1771–1777. IEEE, Los Alamitos (1993)

    Google Scholar 

  71. Shih, C.L., Li, Y.Z., Churng, S., Lee, T.T., Gruver, W.A.: Trajectory synthesis and physical admissibility for a biped robot during the single-support phase. In: Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robot and Sys, pp. 1646–1652 (1990)

    Google Scholar 

  72. Takanishi, A., Ishida, M., Yamazaki, Y., Kato, I.: The realization of dynamic walking by the biped robot WL-10RD. In: Proc. of the Intl. Conf. on Adv., pp. 459–466. Robot, Tokyo (1985)

    Google Scholar 

  73. Arakawa, T., Fukuda, T.: Natural motion generation of a biped locomotion robot using the hierarchical trajectory generation method consisting of GA, EP layers. In: Proc. of the IEEE Conf. on Robot. and Automata, vol. 1, pp. 211–216 (1997)

    Chapter  Google Scholar 

  74. Shih, C.L.: The dynamics and control of a biped walking robot with seven degrees of freedom. ASME J. Dyn. Sys Meas. Control 118, 683–690 (1996)

    Article  MATH  Google Scholar 

  75. Vukobratovic, M., Borovac, B., Surla, D., Stokic, D.: Scientific Fundamentals of Robotics, Biped Locomotion: Dynamics Stability, Control, and Application. Springer, New York (1990)

    Book  Google Scholar 

  76. Xiang, Y., Arora, J.S., Rahmatalla, S., Bhatt, R., Marler, T., Abdel-Malek, K.: Human lifting simulation using multi-objective optimization approach. Multibody Syst. Dyn. 23(4), 431–451 (2009)

    Article  MathSciNet  Google Scholar 

  77. Xiang, Y., Chung, H.J., Kim, J.H., Bhatt, R., Marler, T., Rahmatalla, S., Yang, J., Arora, J.S., Abdel-Malek, K.: Predictive dynamics: an optimization-based novel approach for human motion simulation. Struct. Multidiscip. Optim. 41(3), 465–479 (2009)

    Article  MathSciNet  Google Scholar 

  78. Kim, J.H., Abdel-Malek, K., Yang, J., Marler, R.T.: Prediction and analysis of human motion dynamics performing various tasks. Int. J. Hum. Factors Model. Simul. 1(10), 69–117 (2006)

    Article  Google Scholar 

  79. Yamaguchi, J.I., Takanishi, A., Kato, I.: Development of a biped walking robot compensating for three-axis moment by trunk motion. Paper presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems (1993)

  80. Dasgupta, A., Nakamura, Y.: Making feasible walking motion of humanoid robots from human motion capture data. Paper presented at the IEEE International Conference on Robotics and Automation (1999)

  81. Li, Q., Takanishi, A., Kato, I.: A biped walking robot having a zmp measurement system using universal force-moment sensors. Paper presented at the IEEE/RSJ International Workshop on Intelligent Robots and Systems, Intelligence for Mechanical Systems. (1991)

  82. Park, J.H., Rhee, Y.K.: ZMP trajectory generation for reduced trunk motions of biped robots. Paper presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems (1998)

  83. Takanishi, A., Takeya, T., Karaki, H., Kato, I.: A control method for dynamic biped walking under unknown external force. Paper presented at the IEEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications (1990)

  84. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  85. Marler, T.: A Study of Multi-Objective Optimization Methods for Engineering Applications. VDM Verlag, Saarbrucken (2009)

    Google Scholar 

  86. Marler, R.T., Arora, J.S., Yang, J., Kim, H.J., Abdel-Malek, K.: Use of multi-objective optimization for digital human posture prediction. Eng. Optim. 41(10), 295–943 (2009)

    Article  MathSciNet  Google Scholar 

  87. Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18(6), 523–533 (1999)

    Article  MathSciNet  Google Scholar 

  88. Bachar, Y.: Developing controllers for biped humanoid locomotion. MSc thesis, School of Informatics, University of Edinburgh (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pasha Zanoosi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasha Zanoosi, A.A., Naderi, D., Sadeghi-Mehr, M. et al. Investigation of the effects of human body stability on joint angles’ prediction. Multibody Syst Dyn 35, 111–129 (2015). https://doi.org/10.1007/s11044-015-9459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9459-6

Keywords

Navigation