Skip to main content

Optimal Control for Applications in Medical and Rehabilitation Technology: Challenges and Solutions

  • Chapter
  • First Online:
Advances in Mathematical Modeling, Optimization and Optimal Control

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 109))

Abstract

This paper gives an overview of the mathematical background and possible applications of optimal control and inverse optimal control in the field of medical and rehabilitation technology, in particular in human movement analysis, therapy and improvement by means of appropriate medical devices. One particular challenge in this area is the formulation of suitable subject-specific models of motions for healthy and impaired humans including skeletal multibody dynamics and potentially neuromuscular components, and their combination with models of the technical components. The formulation of hybrid multi-phase optimal control problems arising in this context involves non-standard elements such as the open- or closed loop stability of the dynamic motion. Efficient methods for the solution of optimal control and inverse optimal control are discussed and particular difficulties of this problem class are highlighted. In addition, we present several example applications of these methods in the development of mobility aids for geriatric patients, the optimization-based design of exoskeletons, the analysis of running motions with prostheses, the optimal functional electrical stimulation of hemiplegic patients, as well as stability studies for different types of movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann, M., van den Bogert, A.J.: Optimality principles for model-based prediction of human gait. J. Biomech. 43(6), 1055–1060 (2010)

    Article  Google Scholar 

  2. Albrecht, S., Passenberg, C., Sobotka, M., Peer, A., Buss, M., Ulbrich, M.: Optimization criteria for human trajectory formation in dynamic virtual environments. In: Haptics: Generating and Perceiving Tangible Sensations. Lecture Notes in Computer Science. Springer, Berlin (2010)

    Google Scholar 

  3. Alexander, R.M.: The gaits of bipedal and quadrupedal animals. Int. J. Robot. Res. 3(2), 49–59 (1984)

    Article  Google Scholar 

  4. Alexander, R.M.: Optima for Animals. Princeton University Press, Princeton (1996)

    Google Scholar 

  5. Angeli, C., Edgerton, V.R., Gerasimenko, Y., Harkema, S.: Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain: J. Neurol. 137, 1394–1409 (2014)

    Article  Google Scholar 

  6. Azevedo Coste, C., Héliot, R., Pissard-Gibollet, R., Dussaud, P., Andreu, D., Jérôme, F., Laffont, I.: MASEA: Marche Assistée par Stimulation Électrique Adaptative. D’un déclenchement événementiel à un contrôle continu de la stimulation électrique pour la correction du syndrome de pied tombant chez l’hémiplégique. Sciences et Technologie pour le Handicap, Numéro Spécial Handicap et Mouvement (2010)

    Google Scholar 

  7. Benoussaad, M., Sijobert, B., Mombaur, K., Azevedo Coste, C.: Robust foot clearance estimation based on the integration of foot-mounted IMU acceleration data. Sensors 16(1), 12 (2015)

    Article  Google Scholar 

  8. Bernstein, N.: The Coordination and Regulation of Movements. Pergamon, Oxford (1967)

    Google Scholar 

  9. Bock, H.G.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. In: Bonner Mathematische Schriften, vol. 183. Universität Bonn, Bonn (1987)

    Google Scholar 

  10. Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC World Congress, Budapest, International Federation of Automatic Control, pp. 242–247 (1984)

    Google Scholar 

  11. van den Bogert, A.J.: Tutorial: musculoskeletal model for simulation of walking. In: Dynamic Walking Conference 2011, Jena (2011)

    Google Scholar 

  12. Coleman, M.J.: A stability study of a three-dimensional passive-dynamic model of human gait. Ph.D. thesis, Cornell University (1998)

    Google Scholar 

  13. Cronin, J.: Differential Equations: Introduction and Qualitative Theory. Marcel Dekker, New York (1994)

    MATH  Google Scholar 

  14. Delp, S., Anderson, F., Arnold, A., Loan, P., Habib, A., John, C., Guendelman, E., Thelan, D.: Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 55, 1940–1950 (2007)

    Article  Google Scholar 

  15. Dempe, S., Gadhi, N.: Necessary optimality conditions for bilevel set optimization problems. Glob. Optim. 39(4), 529–542 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.: Direct loss minimization inverse optimal control. In: Proceedings of Robotics Science and Systems (RSS) (2015)

    Google Scholar 

  17. Englsberger, J., Ott, C.: Gangstabilisierung humanoider roboter mittels capture point regelung. Automatisierungstechnik 60(11), 692–704 (2012)

    Article  Google Scholar 

  18. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, New York (2007)

    MATH  Google Scholar 

  19. Felis, M.L.: RBDL - Rigid body dynamics library. http://rbdl.bitbucket.org/ (2012–2015)

  20. Felis, M.L.: Modeling emotional aspects of human locomotion. Ph.D. thesis, University of Heidelberg (2015)

    Google Scholar 

  21. Felis, M.L., Mombaur, K., Berthoz, A.: An optimal control approach to reconstruct human gait dynamics from kinematic data. In: Proceedings of IEEE International Conference on Humanoid Robots (Humanoids 2015) (2015)

    Google Scholar 

  22. Fotinea, S.E., Efthimiou, E., Dimou, A.L., Goulas, T., Karioris, P., Peer, A., Maragos, P., Tzafestas, C., Kokkinos, I., Hauer, K., Mombaur, K., Koumpouros, I., Stanzyk, B.: Data acquisition towards defining a multimodal interaction model for human-assistive robot communication. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction Aging and Assistive Environments. Lecture Notes in Computer Science, vol. 8515, pp. 615–626. Springer, Cham (2014)

    Google Scholar 

  23. Gopalakrishnan, A., Modenese, L., Phillips, A.T.M.: A novel computational framework for deducing muscle synergies from experimental joint moments. Front. Comput. Neurosci. 8, 153 (2014)

    Article  Google Scholar 

  24. Goswami, A., Espiau, B., Keramane, A.: Limit cycles and their stability and passive bipedal gaits. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 246–251 (1996)

    Google Scholar 

  25. Hatz, K.: Efficient numerical methods for hierarchical dynamic optimization with application to cerebral palsy gait modeling. Ph.D. thesis, University of Heidelberg (2014)

    Google Scholar 

  26. Hatz, K., Schlöder, J.P., Bock, H.G.: Estimating parameters in optimal control problems. SIAM J. Sci. Comput. 34(3), 1707–1728 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Héliot, R., Mombaur, K., Azevedo Coste, C.: Coupling CPG and optimization to generate muscle activation for drop-foot correction online. Modeling, Simulation and Optimization of Bipedal Walking. Springer, New York (2013)

    Google Scholar 

  28. Herr, H., Popovic, M.: Angular momentum in human walking. J. Exp. Biol. 211, 467–81 (2008)

    Article  Google Scholar 

  29. Heuberger, C.: Inverse combinatorial optimization: a survey on problems, methods and results. J. Comb. Optim. 8(3), 329–361 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hill, A.V.: The heat of shortening and dynamics constants of muscles. Proc. R. Soc. Lond. B 126(843), 136–195 (1938)

    Article  Google Scholar 

  31. Ho Hoang, K.L., Mombaur, K.: Adjustments to de Leva-anthropometric regression data for the changes in body proportions in elderly humans. J. Biomech. 48(13), 3741–5 (2015)

    Article  Google Scholar 

  32. Ho Hoang, K.L., Mombaur, K., Wolf, S.: Investigating capturability in dynamic human locomotion using multi-body dynamics and optimal control. In: Bock, H.G., Hoang, X.P., Rannacher, R., Schlöder, J.P. (eds.) Modeling, Simulation and Optimization of Complex Processes - HPSC 2012, pp. 83–93. Springer, New York (2014)

    Google Scholar 

  33. Hof, A.: The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum. Mov. Sci. 27(1), 112–125 (2008)

    Article  Google Scholar 

  34. Hsu, J.C., Meyer, A.U.: Modern Control Principles and Applications. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  35. Hurmuzlu, Y.: Dynamics of bipedal gait. Part II: Stability analysis of a planar five-link biped. J. Appl. Mech. 60, 337–343 (1993)

    Google Scholar 

  36. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation (2003)

    Google Scholar 

  37. Kalman, R.: When is a linear control system optimal? Trans. ASME J. Basic Eng. D 86(1), 51–60 (1964)

    Article  MathSciNet  Google Scholar 

  38. Koch, K.H.: Using model-based optimal control for conceptional motion generation for the humanoid robot HRP-2 14 and design investigations for exoskeletons. Ph.D. thesis, University of Heidelberg (2015)

    Google Scholar 

  39. Koch, K.H., Mombaur, K.: ExoOpt – a framework for patient centered design optimization of lower limb exoskeletons. In: Proceedings of IEEE International Conference on Rehabilitation Robotics (ICORR) (2015)

    Google Scholar 

  40. Koolen, T., De Boer, T., Rebula, J., Goswami, A., Pratt, J.: Capturability-based analysis and control of legged locomotion. Part 1: Theory and application to three simple gait models. Int. J. Robot. Res. 31(9), 1094–1113 (2012)

    Google Scholar 

  41. Leineweber, D.B., Schäfer, A., Bock, H.G., Schlöder, J.P.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part II: Software aspects and applications. Comput. Chem. Eng. 27, 157–174 (2003)

    Google Scholar 

  42. de Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29(9), 1223–1230 (1996)

    Article  Google Scholar 

  43. Levine, S., Koltun, V.: Guided policy search. In: Proceedings of ICML (2013)

    Google Scholar 

  44. Liu, C.K., Hertzmann, A., Popovic, Z.: Learning physics-based motion style with inverse optimization. ACM Trans. Graph. 24, 1071–1081 (2005)

    Article  Google Scholar 

  45. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  46. Majumdar, A., Ahmadi, A.A., Tedrake, R.: Control design along trajectories with sums of squares programming. In: International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

  47. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9, 62–82 (1990)

    Article  Google Scholar 

  48. Mombaur, K.D.: Performing open-loop stable flip-flops - an example for stability optimization and robustness analysis of fast periodic motions. Fast Motions in Robotics and Biomechanics - Optimization and Feedback Control. Lecture Notes in Control and Information Science. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  49. Mombaur, K.: Using optimization to create self-stable human-like running. Robotica 27, 321–330 (2009)

    Article  Google Scholar 

  50. Mombaur, K.: A mathematical study of sprinting on artificial legs. In: Bock, H.G., Hoang, X.P., Rannacher, R., Schlöder, J.P. (eds.) Modeling, Simulation and Optimization of Complex Processes - HPSC 2012, pp. 157–168. Springer, New York (2014)

    Google Scholar 

  51. Mombaur, K., Ho Hoang, K.L.: How to best support sit to stand transfers of geriatric patients: motion optimization under external forces for the design of physical assistive devices (2015, submitted)

    Google Scholar 

  52. Mombaur, K., Sreenivasa, M.: Inverse optimal control as a tool to understand human yoyo playing. In: Proceedings of ICNAAM (2010)

    Book  Google Scholar 

  53. Mombaur, K.D., Bock, H.G., Schlöder, J.P., Longman, R.W.: Open-loop stable solution of periodic optimal control problems in robotics. J. Appl. Math. Mech. [Z. Angew. Math. Mech.] 85(7), 499–515 (2005)

    Google Scholar 

  54. Mombaur, K.D., Bock, H.G., Schlöder, J.P., Longman, R.W.: Self-stabilizing somersaults. IEEE Trans. Robot. 21(6), 1148–1157 (2005)

    Article  Google Scholar 

  55. Mombaur, K.D., Longman, R.W., Bock, H.G., Schlöder, J.P.: Open-loop stable running. Robotica 23(01), 21–33 (2005)

    Article  MATH  Google Scholar 

  56. Mombaur, K.D., Giesl, P., Wagner, H.: Stability optimization of juggling. In: Proceedings of International Conference on High Performance Scientific Computing 2006. Lecture Notes in Scientific Computing. Springer, Hanoi/Vietnam (2008)

    Google Scholar 

  57. Mombaur, K., Truong, A., Laumond, J.P.: From human to humanoid locomotion: an inverse optimal control approach. Auton. Robot. 28(3) (2010) (Published online 31 Dec 2009)

    Google Scholar 

  58. Mombaur, K., Olivier, A.H., Crétual, A.: Forward and inverse optimal control of human running. In: Modeling, Simulation and Optimization of Bipedal Walking, vol. 18. Springer, Berlin (2012)

    Google Scholar 

  59. Nakamura, Y., Yamane, K., Suzuki, I., Fujita, Y.: Dynamic computation of musculo-skeletal human model based on efficient algorithm for closed kinematic chains. In: Proceedings of the 2nd International Symposium on Adaptive Motion of Animals and Machines (2003)

    Google Scholar 

  60. Pandy, M.: Computer modeling and simulation of human movement. Ann. Rev. Biomed. Eng. 3, 245–273 (2001)

    Article  Google Scholar 

  61. Papachristodoulou, A., Prajna, S.: On the construction of Lyapunov functions using the sum of squares decomposition. In: Proceedings of IEEE Conference on Decision and Control (2002)

    Book  MATH  Google Scholar 

  62. Popovic, M., Englehart, A., Herr, H.: Angular momentum primitives for human walking: biomechanics and control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2004)

    Google Scholar 

  63. Popovic, M., Popovic, D., Schwirtlich, L., Sinkjaer, T.: Clinical evaluation of functional electrical therapy (FET) in chronic hemiplegic subjects. Neuromodulation 7(2), 133–140 (2004)

    Article  Google Scholar 

  64. Posa, M., Tobenkin, M., Tedrake, R.: Lyapunov analysis of rigid body systems with impacts and friction via sums-of-squares. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 63–72. ACM, New York (2013)

    Google Scholar 

  65. Powell, M.J.D.: The Bobyqa algorithm for bound constrained optimization without derivatives. Technical Reports 2009/NA06, Department of Applied Mathematics and Theoretical Physics, Cambridge University (2009)

    Google Scholar 

  66. Pratt, J., Tedrake, R.: Velocity-based stability margins for fast bipedal walking. In: Fast Motions in Robotics and Biomechanics - Optimization and Feedback Control. Lecture Notes in Control and Information Science. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  67. Rosenbaum, D.A.: Human Motor Control. Academic, San Diego (1991)

    Google Scholar 

  68. Sardain, P., Bessonnet, G.: Forces acting on a biped robot, center of pressure-zero moment point. IEEE Trans. Syst. Man Cybern. 34, 630–637 (2004)

    Article  Google Scholar 

  69. Sartori, M., Gizzi, L., Lloyd, D., Farina, D.: A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives. Front. Comput. Neurosci. 7, 1–22 (2013)

    Article  Google Scholar 

  70. Sreenivasa, M., Murai, A., Nakamura, Y.: Modeling and identification of the human arm stretch reflex using a realistic spiking neural network and musculoskeletal model. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013)

    Google Scholar 

  71. Steele, K.M., Tresch, M.C., Perreault, E.J.: The number and choice of muscles impact the results of muscle synergy analyses. Front. Comput. Neurosci. 7, 105 (2013)

    Article  Google Scholar 

  72. Stoer, J., Bulirsch, R.: Numerische Mathematik, vol. 2. Springer, Berlin/Heidelberg (1990)

    MATH  Google Scholar 

  73. Vukobratovic, M., Borovac, B.: Zero-moment-point – thirty five years of its life. Int. J. Humanoid Rob. 1(1), 157–173 (2004)

    Article  Google Scholar 

  74. Wieber, P.B.: Humans toolbox. http://www.inrialpes.fr/bipop/software/humans/ (2007)

  75. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 3rd edn. Wiley, New York (2004)

    Google Scholar 

  76. Ye, J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307, 350–369 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Parts of this research have been supported by the European Union within the European projects MOBOT (GA 600796) and KoroiBot (GA 611909) and the German Excellence Initiative within the third pillar funding of the University of Heidelberg and the HEIKA Research partnership.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Mombaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mombaur, K. (2016). Optimal Control for Applications in Medical and Rehabilitation Technology: Challenges and Solutions. In: Hiriart-Urruty, JB., Korytowski, A., Maurer, H., Szymkat, M. (eds) Advances in Mathematical Modeling, Optimization and Optimal Control. Springer Optimization and Its Applications, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-319-30785-5_5

Download citation

Publish with us

Policies and ethics