Skip to main content
Log in

Implementation of geometrically exact beam element for nonlinear dynamics modeling

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The paper develops a new type of geometrically exact beam element featuring large displacements and rotations together with small warping. The dimension reduction approach based on variational asymptotic method has been explored, and a linear two-dimensional finite element procedure has been implemented to predict the cross-sectional stiffness and recover the cross-sectional strain fields of the beam. The total and incremental variables mixed formula of governing equations of motion is presented, in which the Wiener–Milenković parameters are selected to vectorize the finite rotation. The dynamic problem of geometrically exact beam has been solved by the implicit Radau IIA algorithms, the time histories of large translations and rotations with small three-dimensional warping have been integrated. Numerical simulations have been performed and the results have been compared to those of commercial software LS-DYNA. It can be concluded that the current modeling approach features high accuracy and that the new geometrically exact beam with warping is robust enough to predict large deformations with small strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mota, A.A.: A class of geometrically exact membrane and cable finite elements based on the Hu–Washizu functional. Ph.D. Dissertation, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY (2000)

  2. Simo, J.C.: Mathematical modeling and numerical simulation of the dynamics of flexible structures undergoing large overall motions. Air Force Office of Scientific Research. Technical Report AFOSR-92-0287TR, Bolling AFB, DC (1992)

  3. Reissner, E.: On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52(2), 87–95 (1973)

    Article  MATH  Google Scholar 

  4. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985). doi:10.1016/0045-7825(85)90050-7

    Article  MATH  MathSciNet  Google Scholar 

  5. Simo, J.C.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986). doi:10.1016/0045-7825(86)90079-4

    Article  MATH  Google Scholar 

  6. Bauchau, O.A., Hong, C.H.: Nonlinear composite beam theory. J. Appl. Mech. 55(1), 156–163 (1988). doi:10.1115/1.3173622

    Article  MATH  Google Scholar 

  7. Bauchau, O.A.: Computational schemes for flexible, nonlinear multi-body systems. Multibody Syst. Dyn. 2(2), 169–225 (1998). doi:10.1023/A:1009710818135

    Article  MATH  Google Scholar 

  8. Hodges, D.H.: A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. Int. J. Solids Struct. 26(11), 1253–1273 (1990). doi:10.1016/0020-7683(90)90060-9

    Article  MATH  MathSciNet  Google Scholar 

  9. Yu, W., Hodges, D.H., Volovoi, V., Cesnik, C.E.S.: On Timoshenko-like modeling of initially curved and twisted composite beams. Int. J. Solids Struct. 39(19), 5101–5121 (2002). doi:10.1016/S0020-7683(02)00399-2

    Article  MATH  Google Scholar 

  10. Zhao, Z., Ren, G.: A quaternion-based formulation of Euler–Bernoulli beam without singularity. Nonlinear Dyn. 67(3), 1825–1835 (2012). doi:10.1007/s11071-011-0109-0

    Article  MATH  MathSciNet  Google Scholar 

  11. Jelenić, G., Crisfield, M.A.: Interpolation of rotational variables in nonlinear dynamics of 3D beams. Int. J. Numer. Methods Eng. 43(7), 1193–1222 (1998). doi:10.1002/(SICI)1097-0207(19981215)

    Article  MATH  Google Scholar 

  12. Crisfield, M., Jelenić, G.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc., Math. Phys. Eng. Sci. 455(1983), 1125–1147 (1999). doi:10.1098/rspa.1999.0352

    Article  MATH  Google Scholar 

  13. Epple, A.: Method for increased computational efficiency of multibody simulations. Ph.D. Dissertation, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA (2008)

  14. Danielson, D.A., Hodges, D.H.: Nonlinear beam kinematics by decomposition of the rotation tensor. J. Appl. Mech. 54(2), 258–262 (1987). doi:10.1115/1.3173004

    Article  MATH  Google Scholar 

  15. Yu, W., Hodges, D.H.: Elasticity solutions versus asymptotic sectional analysis of homogeneous, isotropic, prismatic beams. J. Appl. Mech. 71(1), 15–23 (2004). doi:10.1115/1.1640367

    Article  MATH  Google Scholar 

  16. Berdichevsky, V.L.: Variational-asymptotic method of constructing a theory of shells PMM. J. Appl. Math. Mech. 43(4), 664–687 (1979). doi:10.1016/0021-8928(79)90157-6

    Article  MathSciNet  Google Scholar 

  17. Yu, W.: Variational asymptotic modeling of composite dimensionally reducible structures. Ph.D. Dissertation, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA (2002)

  18. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht (2011). Chapters 14, 16

    Book  MATH  Google Scholar 

  19. Wang, J., Rodriguez, H., Keribar, R.: Integration of flexible multibody systems using Radau IIA algorithms. J. Comput. Nonlinear Dyn. 5(4), 1–14 (2010). doi:10.1115/1.4001907

    Article  Google Scholar 

  20. Dadeppo, D.A., Schmidt, R.: Instability of clamped–hinged circular arches subjected to a point load. J. Appl. Mech. 42(2), 894–896 (1975). doi:10.1115/1.3423734

    Article  Google Scholar 

  21. Ibrahimbegović, A.: On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 122(1–2), 11–26 (1995). doi:10.1016/0045-7825(95)00724-F

    Article  MATH  Google Scholar 

  22. Bauchau, O.A., Wang, J.L.: Efficient and robust approaches to the stability analysis of large multibody systems. J. Comput. Nonlinear Dyn. 3(1), 1–12 (2008). doi:10.1115/1.2397690

    Google Scholar 

Download references

Acknowledgements

The paper was written under the supports of both “2011 China overseas personnel science and technology activities supporting project” and “2011 Beijing overseas personnel science and technology activities supporting project”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jielong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J. Implementation of geometrically exact beam element for nonlinear dynamics modeling. Multibody Syst Dyn 35, 377–392 (2015). https://doi.org/10.1007/s11044-015-9457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9457-8

Keywords

Navigation