Skip to main content
Log in

A study of moderately thick quadrilateral plate elements based on the absolute nodal coordinate formulation

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Finite element analysis using plate elements based on the absolute nodal coordinate formulation (ANCF) can predict the behaviors of moderately thick plates subject to large deformation. However, the formulation is subject to numerical locking, which compromises results. This study was designed to investigate and develop techniques to prevent or mitigate numerical locking phenomena. Three different ANCF plate element types were examined. The first is the original fully parameterized quadrilateral ANCF plate element. The second is an update to this element that linearly interpolates transverse shear strains to overcome slow convergence due to transverse shear locking. Finally, the third is based on a new higher order ANCF plate element that is being introduced here. The higher order plate element makes it possible to describe a higher than first-order transverse displacement field to prevent Poisson thickness locking. The term “higher order” is used, because some nodal coordinates of the new plate element are defined by higher order derivatives.

The performance of each plate element type was tested by (1) solving a comprehensive set of small deformation static problems, (2) carrying out eigenfrequency analyses, and (3) analyzing a typical dynamic scenario. The numerical calculations were made using MATLAB. The results of the static and eigenfrequency analyses were benchmarked to reference solutions provided by the commercially available finite element software ANSYS.

The results show that shear locking is strongly dependent on material thickness. Poisson thickness locking is independent of thickness, but strongly depends on the Poisson effect. Poisson thickness locking becomes a problem for both of the fully parameterized element types implemented with full 3-D elasticity. Their converged results differ by about 18 % from the ANSYS results. Corresponding results for the new higher order ANCF plate element agree with the benchmark. ANCF plate elements can describe the trapezoidal mode; therefore, they do not suffer from Poisson locking, a reported problem for fully parameterized ANCF beam elements. For cases with shear deformation loading, shear locking slows solution convergence for models based on either the original fully parameterized plate element or the newly introduced higher order plate element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahmad, S., Irons, B.M., Zienkiewich, O.C.: Analysis of thick and thin shell structures by curved finite elements. Int. J. Numer. Methods Eng. 2, 419–451 (1970)

    Article  Google Scholar 

  2. ANSYS Inc.: ANSYS Academic Research, Release 12.0.1. Help System, Element Reference (2009)

    Google Scholar 

  3. Arciniega, R.A., Reddy, J.N.: Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures. Comput. Methods Appl. Mech. Eng. 196, 1048–1073 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ardema, M.D., Skowronski, J.M.: Spacar-computer program for dynamic analysis of flexible spatial mechanisms and manipulators. In: Schiehlen, W.O. (ed.) Multibody Systems Handbook. Springer, Berlin (1990)

    Google Scholar 

  5. Bathe, K.-J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  6. Bischoff, M., Ramm, E.: Shear deformable shell elements for large strains and rotations. Int. J. Numer. Methods Eng. 40(23), 4427–4449 (1997)

    Article  MATH  Google Scholar 

  7. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 1st edn. Cambridge University Press, Cambridge (1997), reprinted 2000

    MATH  Google Scholar 

  8. Büchter, N., Ramm, E.: 3D-extension of nonlinear shell equations based on the enhanced assumed strain concept. In: Computational Methods in Applied Sciences, pp. 55–62 (1992)

    Google Scholar 

  9. Carrera, E., Brischetto, S.: Analysis of thickness locking in classical, refined and mixed multilayered plate theories. Compos. Struct. 82(4), 549–562 (2008)

    Article  Google Scholar 

  10. Dmitrochenko, O., Matikainen, M., Mikkola, A.: The simplest 3- and 4-noded fully-parameterized ancf plate elements. In: Proceedings of the ASME 2012 Int. Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Chicago, USA, 12–15 August 2012

    Google Scholar 

  11. Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Int. J. Numer. Methods Eng. 10(1), 17–43 (2003)

    MATH  Google Scholar 

  12. Dufva, K., Shabana, A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219, 345–355 (2005)

    Google Scholar 

  13. Dvorkin, E.N., Bathe, K.-J.: A continuum mechanics based four-node shell element for general nonlinear analysis. Eng. Comput. 77, 77–88 (1984)

    Article  Google Scholar 

  14. García-Vallejo, D., Valverde, J., Domínguez, J.: An internal damping model for the absolute nodal coordinate formulation. Nonlinear Dyn. 42(4), 347–369 (2005)

    Article  Google Scholar 

  15. Gerstmayr, J., Matikainen, M.K., Mikkola, A.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 359–384 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gerstmayr, J., Shabana, A.A.: Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation. In: Multibody Dynamics 2005, ECCOMAS Thematic Conference, Madrid, Spain, 21–24 June 2005

    Google Scholar 

  17. Hauptmann, R., Doll, S., Harnau, N., Schweizerhof, K.: ‘Solid-shell’ elements with linear and quadratic shape functions at large deformations with nearly incompressible materials. Comput. Struct. 79, 1671–1685 (1997)

    Article  Google Scholar 

  18. Kulikov, G.M., Plotnikova, S.V.: Equivalent single-layer and layer-wise shell theories and rigid-body motions, part 1: foundations. Int. J. Numer. Methods Eng. 12(4), 275–283 (2005)

    Google Scholar 

  19. Maqueda, L.G., Shabana, A.A.: Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams. Multibody Syst. Dyn. 18, 375–596 (2007)

    Article  MATH  Google Scholar 

  20. Matikainen, M., Dmitrochenko, O., Mikkola, A.: Beam elements with trapezoidal cross section deformation modes based on the absolute nodal coordinate formulation. In: International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, 19–25 September 2010

    Google Scholar 

  21. Matikainen, M.K., Schwab, A.L., Mikkola, A.: Comparison of two moderately thick plate elements based on the absolute nodal coordinate formulation. In: Multibody Dynamics 2009, ECCOMAS Thematic Conference, Warsaw, Poland, 29 June–2 July 2009

    Google Scholar 

  22. Matikainen, M.K., von Hertzen, R., Mikkola, A.M., Gerstmayr, J.: Elimination of high frequencies in the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 224(1), 103–116 (2010)

    Google Scholar 

  23. Mikkola, A., Shabana, A.A., Sanchez-Rebollo, C., Jimenez-Octavio, J.R.: Comparison between ANCF and B-spline surfaces. Multibody Syst. Dyn. (2013)

  24. Mikkola, A.M., Matikainen, M.K.: Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 1, 103–108 (2006)

    Article  Google Scholar 

  25. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformations of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9(3), 283–309 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Betsch, P.F.G., Stein, E.: A 4-node finite shell element for the implementation of general hyperelastic 3d-elasticity at finite strains. Comput. Methods Appl. Mech. Eng. 130(1–2), 57–79 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rhim, J., Lee, S.W.: A vectorial approach to computational modelling of beams undergoing finite rotations. Int. J. Numer. Methods Eng. 41(3), 527–540 (1998)

    Article  MATH  Google Scholar 

  28. Sanborn, G.G., Shabana, A.A.: On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 22, 181–197 (2009)

    Article  MATH  Google Scholar 

  29. Schwab, A., Gerstmayr, J., Meijaard, J.: Comparison of three-dimensional flexible thin plate elements for multibody dynamic analysis: finite element formulation and absolute nodal coordinate formulation. In: Proceedings of the IDETC/CIE 2007, ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, NV, USA, 4–7 September 2007, paper number DETC2007-34754

    Google Scholar 

  30. Schwab, A., Meijaard, J.: Comparison of three-dimensional flexible beam elements for dynamic analysis: classical finite element formulation and absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 5, 1 (2010)

    Article  Google Scholar 

  31. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339–348 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Shabana, A.A., Christensen, A.P.: Three-dimensional absolute nodal co-ordinate formulation: plate problem. Int. J. Numer. Methods Eng. 40(15), 2775–2790 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Shabana, A.A., Yakoub, Y.R.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2001)

    Article  Google Scholar 

  34. Sugiyama, H., Escalona, J.L., Shabana, A.A.: Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dyn. 31(2), 167–195 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, Tokyo (1983)

    Google Scholar 

  36. Toscano, R.G., Dvorkin, E.N.: A shell element for finite strain analysis: hyperelastic material models. Eng. Comput. 24, 514–535 (2007)

    Article  MATH  Google Scholar 

  37. Wang, C.M., Reddy, J.N., Lee, K.H.: Shear Deformable Beams and Plates. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Finnish IT Center for Science for the supercomputer time used for calculations, the Academy of Finland (Application No. 259543) for supporting Marko Matikainen, and the National Graduate School of Engineering Mechanics, Finland for supporting Antti I. Valkeapää.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko K. Matikainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matikainen, M.K., Valkeapää, A.I., Mikkola, A.M. et al. A study of moderately thick quadrilateral plate elements based on the absolute nodal coordinate formulation. Multibody Syst Dyn 31, 309–338 (2014). https://doi.org/10.1007/s11044-013-9383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9383-6

Keywords

Navigation