Skip to main content
Log in

Three-node Mindlin plate finite element with shear stress resultants derived from equilibrium equations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new 9-DOF triangular plate finite element for linear-elastic analysis of very thin to thick plates with small deformations is presented. The element is based on Mindlin plate theory and has higher-order interpolations that are conceived to satisfy all differential equations, including the equilibrium ones based on which the shear stress resultants are derived. Numerical investigation revealed certain limitations of the initial formulation which were resolved with an alternative approach for the derivation of the higher-order terms in the rotational fields. This resulted in a close relation of the formulation to the established DKT element for thin plate scenarios. Numerical investigation shows that the presented element has a correct rank, passes the patch test, is shear locking free and high-performing. It also indicates its consistent performance in regard to different meshing or boundary conditions, all of which makes it highly suitable for practical engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals, 7th edn. Elsevier, Kidlington, Oxfordshire (2013)

    Google Scholar 

  2. Bathe, K.J.: Finite Element Procedures, 2nd edn. Klaus-Jürgen Bathe, Watertown (2014)

    Google Scholar 

  3. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola (2000)

    Google Scholar 

  4. Oñate, E.: Structural Analysis with the Finite Element Method. Linear Statics. Volume 1. Basis and Solids. Springer, Barcelona (2009)

    Google Scholar 

  5. Oñate, E.: Structural Analysis with the Finite Element Method. Linear Statics. Volume 2. Beams, Plates and Shells. Springer, Barcelona (2013)

    Google Scholar 

  6. Zienkiewicz, O.C., Taylor, R.L., Too, J.M.: Reduced integration technique in general analysis of plates and shells. Int. J. Numer. Methods Eng. 3(2), 275–290 (1971). https://doi.org/10.1002/nme.1620030211

    Article  Google Scholar 

  7. Hughes, T.J.R., Cohen, M., Haroun, M.: Reduced and selective integration techniques in the finite element analysis of plates. Nucl. Eng. Des. 46(1), 203–222 (1978). https://doi.org/10.1016/0029-5493(78)90184-X

    Article  Google Scholar 

  8. Pian, T.H.H.: Derivation of element stiffness matrices by assumed stress distributions. AIAA J. 2(7), 1333–1336 (1964). https://doi.org/10.2514/3.2546

    Article  ADS  Google Scholar 

  9. Pian, T.H.H., Tong, P.: Basis of finite element methods for solid continua. Int. J. Numer. Methods Eng. 1(1), 3–28 (1969). https://doi.org/10.1002/nme.1620010103

    Article  Google Scholar 

  10. Stricklin, J.A., Haisler, W.E., Tisdale, P.R., Gunderson, R.: A rapidly converging triangular plate element. AIAA J. 7(1), 180–181 (1969). https://doi.org/10.2514/3.5068

    Article  ADS  Google Scholar 

  11. Batoz, J.-L., Bathe, K.-J., Ho, L.-W.: A study of three-node triangular plate bending elements. Int. J. Numer. Methods Eng. 15(12), 1771–1812 (1980). https://doi.org/10.1002/nme.1620151205

    Article  Google Scholar 

  12. Hughes, T.J.R., Tezduyar, T.E.: Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J. Appl. Mech. 48(3), 587–596 (1981). https://doi.org/10.1115/1.3157679

    Article  ADS  Google Scholar 

  13. Macneal, R.H.: Derivation of element stiffness matrices by assumed strain distributions. Nucl. Eng. Des. 70(1), 3–12 (1982). https://doi.org/10.1016/0029-5493(82)90262-X

    Article  Google Scholar 

  14. Zienkiewicz, O.C., Xu, Z., Zeng, L.F., Samuelsson, A., Wiberg, N.-E.: Linked interpolation for Reissner–Mindlin plate elements: part I-A simple quadrilateral. Int. J. Numer. Methods Eng. 36(18), 3043–3056 (1993). https://doi.org/10.1002/nme.1620361802

    Article  Google Scholar 

  15. Taylor, R.L., Auricchio, F.: Linked interpolation for Reissner–Mindlin plate elements: part II-A simple triangle. Int. J. Numer. Methods Eng. 36(18), 3057–3066 (1993). https://doi.org/10.1002/nme.1620361803

    Article  Google Scholar 

  16. Cen, S., Shang, Y.: Developments of Mindlin–Reissner plate elements. Math. Probl. Eng. 2015, 1–12 (2015). https://doi.org/10.1155/2015/456740

    Article  MathSciNet  Google Scholar 

  17. Shang, Y., Cen, S., Li, C.-F., Fu, X.-R.: Two generalized conforming quadrilateral Mindlin–Reissner plate elements based on the displacement function. Finite Elem. Anal. Des. 99, 24–38 (2015). https://doi.org/10.1016/j.finel.2015.01.012

    Article  Google Scholar 

  18. Li, T., Ma, X., Xili, J., Chen, W.: Higher-order hybrid stress triangular Mindlin plate element. Comput. Mech. 58(6), 911–928 (2016). https://doi.org/10.1007/s00466-016-1322-y

    Article  MathSciNet  Google Scholar 

  19. Bao, Y., Cen, S., Li, C.: Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin–Reissner plates. Eng. Comput. 34(2), 548–586 (2017). https://doi.org/10.1108/EC-04-2016-0143

    Article  Google Scholar 

  20. Videla, J., Natarajan, S., Bordas, S.P.A.: A new locking-free polygonal plate element for thin and thick plates based on Reissner–Mindlin plate theory and assumed shear strain fields. Comput. Struct. 220, 32–42 (2019). https://doi.org/10.1016/j.compstruc.2019.04.009

    Article  Google Scholar 

  21. Teixeira de Freitas, J.A., Tiago, C.: Hybrid-Trefftz stress elements for plate bending. Int. J. Numer. Methods Eng. 121(9), 1946–1976 (2020). https://doi.org/10.1002/nme.6294

    Article  MathSciNet  Google Scholar 

  22. Huang, J.-B., Cen, S., Shang, Y., Li, C.-F.: A new triangular hybrid displacement function element for static and free vibration analyses of Mindlin–Reissner plate. Latin Am. J. Solids Struct. 14(5), 765–804 (2017). https://doi.org/10.1590/1679-78253036

    Article  Google Scholar 

  23. Yang, G., Hu, D., Long, S.: A reconstructed edge-based smoothed DSG element based on global coordinates for analysis of Reissner–Mindlin plates. Acta. Mech. Sin. 33(1), 83–105 (2017). https://doi.org/10.1007/s10409-016-0607-x

    Article  MathSciNet  CAS  ADS  Google Scholar 

  24. Wang, C., Sun, X., Zhang, X., Hu, P.: High-order quasi-conforming triangular Reissner–Mindlin plate element. Eng. Comput. 35(8), 2722–2752 (2018). https://doi.org/10.1108/EC-11-2017-0446

    Article  Google Scholar 

  25. Batoz, J.-L., Antaluca, E., Katili, I.: On the formulation and evaluation of old and new efficient low order triangular plate bending elements with shear effects. Comput. Mech. 68(1), 69–96 (2021). https://doi.org/10.1007/s00466-021-02020-6

    Article  MathSciNet  Google Scholar 

  26. Grbac, M., Ribarić, D.: Three-node assumed strain Mindlin plate finite elements. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 102(6), 1–18 (2022). https://doi.org/10.1002/zamm.202100447

    Article  MathSciNet  Google Scholar 

  27. Tessler, A., Hughes, T.J.R.: A three-node Mindlin plate element with improved transverse shear. Comput. Methods Appl. Mech. Eng. 50, 71–101 (1985). https://doi.org/10.1016/0045-7825(85)90114-8

    Article  ADS  Google Scholar 

  28. Zhongnian, X.: A simple and efficient triangular finite element for plate bending. Acta. Mech. Sin. 2(2), 185–192 (1986). https://doi.org/10.1007/BF02485859

    Article  Google Scholar 

  29. Zienkiewicz, O.C., Taylor, R.L., Papadopoulos, P., Oñate, E.: Plate bending elements with discrete constraints: new triangular elements. Comput. Struct. 35, 505–522 (1990). https://doi.org/10.1016/0045-7949(90)90072-A

    Article  Google Scholar 

  30. Soh, A.K., Long, Z.F., Cen, S.: A new nine DOF triangular element for analysis of thick and thin plates. Comput. Mech. 24(5), 408–417 (1999). https://doi.org/10.1007/s004660050461

    Article  Google Scholar 

  31. Wanji, C., Cheung, Y.K.: Refined quadrilateral element based on Mindlin/Reissner plate theory. Int. J. Numer. Methods Eng. 47(1–3), 605–627 (2000). https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E

    Article  MathSciNet  Google Scholar 

  32. Soh, A.-K., Cen, S., Long, Y.-Q., Long, Z.-F.: A new twelve DOF quadrilateral element for analysis of thick and thin plates. Eur. J. Mech. A Solids 20(2), 299–326 (2001). https://doi.org/10.1016/S0997-7538(00)01129-3

    Article  MathSciNet  Google Scholar 

  33. Wanji, C., Cheung, Y.K.: Refined 9-Dof triangular Mindlin plate elements. Int. J. Numer. Methods Eng. 51(11), 1259–1281 (2001). https://doi.org/10.1002/nme.196

    Article  Google Scholar 

  34. Ribaric, D.: Problem-dependent cubic linked interpolation for Mindlin plate four-node quadrilateral finite elements. Struct. Eng. Mech. 59(6), 1071–1094 (2016). https://doi.org/10.12989/sem.2016.59.6.1071

    Article  Google Scholar 

  35. Papa Dukić, E., Jelenić, G.: Exact solution of 3D Timoshenko beam problem: problem-dependent formulation. Arch. Appl. Mech. 84(3), 375–384 (2014). https://doi.org/10.1007/s00419-013-0805-y

    Article  ADS  Google Scholar 

  36. Taylor, R.L.: Finite Element Analysis Program (FEAP). University of California, Berkeley (2023)

    Google Scholar 

  37. Auricchio, F., Taylor, R.L.: A triangular thick plate finite element with an exact thin limit. Finite Elem. Anal. Des. 19(1–2), 57–68 (1995). https://doi.org/10.1016/0168-874X(94)00057-M

    Article  Google Scholar 

  38. Chen, W., Wang, J., Zhao, J.: Functions for patch test in finite element analysis of the Mindlin plate and the thin cylindrical shell. Sci. China Ser. G 52(5), 762–767 (2009). https://doi.org/10.1007/s11433-009-0097-y

    Article  Google Scholar 

  39. Morley, L.S.D.: Bending of a simply supported rhombic plate under uniform normal loading. Q. J. Mech. Appl. Math. 15(4), 413–426 (1962). https://doi.org/10.1093/qjmam/15.4.413

    Article  Google Scholar 

  40. Grbac, M., Ribarić, D.: Accurate numerical solutions for standard skew plate benchmark problems. Zb. Radova 25(1), 237–246 (2022). https://doi.org/10.32762/zr.25.1.15

    Article  Google Scholar 

  41. Robinson, J., Haggenmacher, G.W.: Lora-an accurate four node stress plate bending element. Int. J. Numer. Methods Eng. 14, 296–306 (1979). https://doi.org/10.1002/nme.1620140214

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Croatian Science Foundation (research projects ASDEL IP-2016-06-4775 and FIMCOS IP-2018-01-1732) for their financial support.

Funding

This research was supported by the Croatian Science Foundation (research projects ASDEL IP-2016-06-4775 and FIMCOS IP-2018-01-1732).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Grbac.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grbac, M., Ribarić, D. Three-node Mindlin plate finite element with shear stress resultants derived from equilibrium equations. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03899-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03899-x

Navigation