Skip to main content
Log in

Reduced-order forward dynamics of multiclosed-loop systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this work, a reduced-order forward dynamics of multiclosed-loop systems is proposed by exploiting the associated inherent kinematic constraints at acceleration level. First, a closed-loop system is divided into an equivalent open architecture consisting of several serial and tree-type subsystems by introducing cuts at appropriate joints. The resulting cut joints are replaced by appropriate constraint forces also referred to as Lagrange multipliers. Next, for each subsystem, the governing equations of motion are derived in terms of the Lagrange multipliers, which are based on the Newton–Euler formulation coupled with the concept of Decoupled Natural Orthogonal Complement (DeNOC) matrices, introduced elsewhere. In the proposed forward dynamics formulation, Lagrange multipliers are calculated sequentially at the subsystem level, and later treated as external forces to the resulting serial or tree-type systems of the original closed-loop system, for the recursive computation of joint accelerations. Note that such subsystem-level treatment allows one to use already existing algorithms for serial and tree-type systems. Hence, one can perform the dynamic analyses relatively quickly without rewriting the complete model of the closed-loop system at hand. The proposed methodology is in contrast to the conventional approaches, where the Lagrange multipliers are calculated together at the system level or simultaneously along with the joint accelerations, both of which incur higher order computational complexities, and thereby a greater number of arithmetic operations. Due to the smaller size of matrices involved in evaluating Lagrange multipliers in the proposed methodology, and the recursive computation of the joint accelerations, the overall numerical performances like computational efficiency, etc., are likely to improve. The proposed reduced-order forward dynamics formulation is illustrated with two multiclosed-loop systems, namely, a 7-bar carpet scrapping mechanism and a 3-RRR parallel manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roberson, R.E., Schwertassek, R.: Dynamics of Multibody Systems. Springer, Berlin, Heidelberg (1988)

    Book  MATH  Google Scholar 

  2. Shabana, A.: Forms of the dynamic equations and constrained dynamics. In: Shabana, A. (ed.) Computational Dynamics, pp. 178–209, 284–349. Wiley, Chichester (2010)

    Chapter  Google Scholar 

  3. Wittenburg, J.: Systems with closed kinematic chains: general multibody systems. In: Wittenburg, J. (ed.) Dynamics of Multibody Systems, pp. 129–150. Springer, New York (2008)

    Google Scholar 

  4. Featherstone, R.: Closed loop systems. In: Featherstone, R. (ed.) Rigid Body Dynamics Algorithms, pp. 141–161. Springer, New York (2008)

    Chapter  Google Scholar 

  5. Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotic mechanisms. J. Dyn. Syst. Meas. Control 104, 205–211 (1982)

    Article  MATH  Google Scholar 

  6. Hollerbach, J.M.: A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans. Syst. Man Cybern. SMC-10(11), 730–736 (1980)

    Article  MathSciNet  Google Scholar 

  7. Blajer, W.: Dependent variable formulations. In: Ambrósio, J.A.C., Eberhard, P., Maier, G., Rammerstorfer, F.G., Salençon, J. (eds.) Advanced Design of Mechanical Systems: From Analysis to Optimization. CISM Courses and Lectures, pp. 83–105. Springer, Vienna (2009)

    Chapter  Google Scholar 

  8. Blajer, W.: Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems. Multibody Syst. Dyn. 7(3), 265–284 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Baumgarte, J.: Stabilization of constraint and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  10. Braun, D.J., Goldfarb, M.: Eliminating constraint drift in the numerical simulation of constrained dynamical systems. Comput. Methods Appl. Mech. Eng. 198, 3151–3160 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Blajer, W.: Methods for constraint violation suppression in the numerical simulation of constrained multibody systems—a comparative study. Comput. Methods Appl. Mech. Eng. 200, 1568–1576 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Blajer, W.: Independent variable formulations. In: Ambrósio, J.A.C., Eberhard, P., Maier, G., Rammerstorfer, F.G., Salençon, J. (eds.) Advanced Design of Mechanical Systems: From Analysis to Optimization. CISM Courses and Lectures, pp. 107–129. Springer, Vienna (2009)

    Chapter  Google Scholar 

  13. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1986)

    Google Scholar 

  14. Angeles, J., Ma, O.: Dynamic simulation of n-axis serial robotic manipulators using a natural orthogonal complement. Int. J. Robot. Res. 7(5), 32–47 (1988)

    Article  Google Scholar 

  15. Brauchli, H., Weber, R.: Dynamical equations in natural coordinates. Comput. Methods Appl. Mech. Eng. 91, 1403–1414 (1991)

    Article  Google Scholar 

  16. Saha, S.K.: Dynamics of serial multibody systems using the decoupled natural orthogonal complement matrices. J. Appl. Mech. 66, 986–996 (1999)

    Article  Google Scholar 

  17. Featherstone, R.: Robot Dynamics Algorithms. Kluwer Academic, Boston (1987)

    Google Scholar 

  18. Saha, S.K., Schiehlen, W.O.: Recursive kinematics and dynamics for parallel structured closed-loop multibody systems. Mech. Struct. Mach. 29(2), 143–175 (2001)

    Article  Google Scholar 

  19. Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104, 247–255 (1982)

    Article  Google Scholar 

  20. Anderson, K.S., Critchley, J.H.: Improved order-n performance algorithm for the simulation of constrained multirigid-body systems. Multibody Syst. Dyn. 9, 185–212 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Blajer, W., Schiehlen, W., Schirm, W.: A projective criterion to the coordinate partitioning method for multibody dynamics. Arch. Appl. Mech. 64, 215–222 (1994)

    Google Scholar 

  22. Avello, A., Jimenez, J.M., Bayo, E., Jalon, J.G.: A simple and highly parallelizable method for realtime dynamic simulation based on velocity transformations. Comput. Methods Appl. Mech. Eng. 107, 313–339 (1993)

    Article  MATH  Google Scholar 

  23. Critchley, J.H., Anderson, K.S.: A generalized recursive coordinate reduction method for multibody system dynamics. Int. J. Multiscale Comput. Eng. 1(2–3), 181–200 (2003)

    Article  Google Scholar 

  24. Bae, D.S., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics: part II. Closed-loop systems. Mech. Struct. Mach. 15(4), 481–506 (1987)

    Article  Google Scholar 

  25. Nikravesh, P.E., Gim, G.: Systematic construction of the equations of motion for multibody systems containing closed kinematic loops. J. Mech. Des. 115, 143–149 (1993)

    Article  Google Scholar 

  26. Janssen, B., Nievelstein, M.: Multiloop linkage dynamics via geometric methods—a case study on a RH200 hydraulic excavator. A Report, Technische Universiteit Eindhoven, Eindhoven (2005). http://repository.tue.nl/612753

  27. Chaudhary, H., Saha, S.K.: Dynamics and Balancing of Multibody Systems. Lecture Notes in Applied and Computational Mechanics, vol. 37. Springer, Berlin (2008)

    Google Scholar 

  28. Angeles, J.: Fundamentals of Robotic Mechanical Systems, 2nd edn. Springer, New York (2002)

    Google Scholar 

  29. Mohan, A., Saha, S.K.: A recursive, numerically stable, and efficient simulation algorithm for serial robots. Multibody Syst. Dyn. 17(4), 291–319 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Shah, S.V., Saha, S.K., Dutt, J.K.: Dynamics of Tree-Type Robotic Systems. Intelligent Systems. Control and Automation: Science and Engineering Book Series. Springer, Dordrecht (2013). http://www.redysim.co.nr/

    Book  Google Scholar 

  31. Stejskal, V., Valasek, M.: Kinematics and Dynamics of Machinery. Marcel Dekker, New York (1996)

    Google Scholar 

  32. Miller, E.K.: A computational study of the effect of matrix size and type, condition number, coefficient accuracy and computation precision on matrix-solution accuracy. Dig. IEEE Antennas Propag. Soc., Int. Symp. 2, 1020–1023 (1995)

    Google Scholar 

  33. http://functionbay.de/en/

  34. http://www.mathworks.in/help/matlab/ref/mldivide.html

  35. Shampine, L., Reichelt, M.: The Matlab ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science & Technology, Government of India, for financial support to the first author under the sponsored project SR/S3/MERC/001/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Saha.

Appendices

Appendix A1: Block Jacobian matrices for carpet scrapping mechanism

The analytical expressions for the scalar elements of the block Jacobian matrices obtained in (26) from the loop-closure equations are given below:

$$\mathbf{J}_{1,1} \equiv \left [ \begin{array}{c} a_1s_1 \\ a_1c_1 \\ \end{array} \right ], \quad \mathbf{J}_{1,2} \equiv \left [ \begin{array}{c@{\quad}c} -a_2s_2-a_3s_3 & -a_3s_3\\ -a_2c_2-a_3c_3 & -a_3c_3\\ \end{array} \right ], \quad \mathbf{J}_{2,2} \equiv \left [ \begin{array}{c@{\quad}c} -a_2s_2+a_{39}s_3 & a_{39}s_3\\ -a_2c_2-a_{39}c_3 & -a_{39}c_3\\ \end{array} \right ], $$
$$\mathbf{J}_{2,3} \equiv \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c} a_{59}s_5+(a_{46}-a_{56})s_4 & a_{59}s_5 & 0 & 0\\ -a_{59}c_5-(a_{46}-a_{56})c_4 & -a_{59}c_5 & 0 & 0\\ \end{array} \right ], $$
$$\mathbf{J}_{3,3} \equiv \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c} -a_{46}s_4-a_{67}s_6 & & &\\ -a_{97}s_7+a_{59}s_5+(a_{46}-{a}_{56})s_4 & a_{59}s_5 & -a_{67}s_6-a_{97}s_7 & -{a}_{97}s_7\\ a_{46}c_4+a_{67}c_6 & & \\ +a_{97}c_7-a_{59}c_5-(a_{46}-{a}_{56})c_4 & -a_{59}c_5 & a_{67}c_6+a_{97}c_7 & a_{97}c_7\\ \end{array} \right ] $$

where a i or a ij represents link length (kinematic parameters), as shown in Fig. 9(a), and s i and c i represent sinα i and cosα i , respectively. The relations between α i ’s and θ i ’s are given by α 1=θ 1, α 2=θ 2, α 3=π+θ 2+θ 3, α 4=θ 4, α 5=θ 5+θ 4−2π, α 6=θ 6+θ 4−2π and α 7=θ 7+θ 6+θ 4−4π, where α i represents the angle subtended by a link with the horizontal line and θ i ’s are the relative joint angles between the links at the joint locations indicated in the subscripts of θ i , as shown in Fig. 4.

Fig. 9
figure 9

Kinematic architectures

Appendix A2: Block Jacobian matrices for 3-RRR parallel manipulator

The analytical expressions for the scalar elements of the block Jacobian matrices obtained in (37) from the loop-closure equations are given below:

$$\mathbf{J}_{1,1} \equiv \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} -a_1s_1-b_1s_4-d_1s_7+b_2s_5 & -b_1s_4-d_1s_7+b_2s_5 & -d_1s_7+b_2s_5 & b_2s_5 & 0\\ a_1c_1+b_1c_4-d_1c_7-b_2c_5 & \quad b_1c_4-d_1c_7-b_2c_5 & d_1c_7-b_2c_5 & -b_2c_5 & 0\\ \end{array} \right ], $$
$$\mathbf{J}_{2,1} \equiv \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} -a_1s_1-b_1s_4-d_1s_7^\prime+b_3s_6 & -b_1s_4-d_1s_7^\prime+b_3s_6 & -d_1s_7^\prime+b_3s_6 & 0 & b_3s_6\\ a_1c_1+b_1c_4+d_1c_7^\prime-b_3c_6 & b_1c_4+d_1c_7^\prime-b_3c_6 & d_1c_7^\prime-b_3c_6 & 0 & -b_3c_6\\ \end{array} \right ], $$
$$\mathbf{J}_{1,2} \equiv \left [ \begin{array}{c} a_2s_2\\ -a_2c_2\\ \end{array} \right ], \quad \mathbf{J}_{1,3} \equiv \mathbf{J}_{2,2} \equiv \left [ \begin{array}{c} 0\\ 0\\ \end{array} \right ], \quad \mathbf{J}_{2,3} \equiv \left [ \begin{array}{c} a_3s_3\\ -a_3c_3\\ \end{array} \right ] $$

where a i , b i , and d i represent the kinematic parameters of the 3-RRR parallel manipulator shown in Fig. 9(b). The relations between α i ’s and θ i ’s are given by α 1=θ 1, α 2=θ 6, α 3=θ 7, α 4=θ 1+θ 2, α 5=θ 1+θ 2+θ 3+θ 4π, α 6=θ 1+θ 2+θ 3+θ 5−(ππ/3), α 7=θ 1+θ 2+θ 3 and \(\alpha_{7}^{\prime}= \alpha_{7} + \pi{/3}\).

Appendix A3: Block Gaussian elimination of (10)

After carrying out the forward block Gaussian elimination of (10), we arrive at

$$ \left [ \begin{array}{c@{\quad}c} \mathbf{I} & \mathbf{J}^T \\ \mathbf{O} & -\mathbf{JI}^{-1}\mathbf{J}^T\\ \end{array} \right ] \left [ \begin{array}{c} \ddot{\mathbf{q}}\\ -\boldsymbol {\lambda }\\ \end{array} \right ] = \left [ \begin{array}{c} \boldsymbol {\upvarphi }\\ -\dot{\mathbf{J}}\dot{\mathbf{q}} - \mathbf{JI}^{-1}\boldsymbol {\upvarphi }\\ \end{array} \right ] $$
(47)

The vector of Lagrange multipliers is thus obtained as

$$ \boldsymbol {\lambda }= -\bigl(\mathbf{JI}^{-1}\mathbf{J}^T \bigr)^{-1}\bigl(\dot{\mathbf{J}}\dot {\mathbf{q}} + \mathbf{JI}^{-1}\boldsymbol {\upvarphi }\bigr) $$
(48)

which is same as (12).

Appendix A4: Block Gaussian elimination of (23) for the 3-RRR parallel manipulator

Using the expressions of (42), (23) for the 3-RRR parallel manipulator is reproduced here as

$$ \left [ \begin{array}{c@{\quad}c} \overline{\mathbf{I}}_{1,1} & \overline{\mathbf{I}}_{2,1}^T \\ \overline{\mathbf{I}}_{2,1} & \overline{\mathbf{I}}_{2,2} \\ \end{array} \right ] \left [ \begin{array}{c} \boldsymbol {\lambda }_1\\ \boldsymbol {\lambda }_2\\ \end{array} \right ] = \left [ \begin{array}{c} \overline{\boldsymbol {\Psi }}_1\\ \overline{\boldsymbol {\Psi }}_2\\ \end{array} \right ] $$
(49)

Applying the forward block Gaussian elimination using the block pivot as \(\overline{\mathbf{I}}_{2,1}\overline{\mathbf{I}}_{1,1}^{-1}\), on (49) the following block upper triangular matrix on the LHS is obtained

$$ \left [ \begin{array}{c@{\quad}c} \overline{\mathbf{I}}_{1,1} & \overline{\mathbf{I}}_{2,1}^T \\ \mathbf{O}&\overline{\mathbf{I}}_{2,2}-\overline{\mathbf{I}}_{2,1}\overline{\mathbf{I}}_{1,1}^{-1}\overline{\mathbf{I}}_{2,1}^T \\ \end{array} \right ] \left [ \begin{array}{c} \boldsymbol {\lambda }_1\\ \boldsymbol {\lambda }_2\\ \end{array} \right ] = \left [ \begin{array}{c} \overline{\boldsymbol {\Psi }}_1\\ \overline{\boldsymbol {\Psi }}_2 - \overline{\mathbf{I}}_{2,1}\overline{\mathbf{I}}_{1,1}^{-1}\overline{\boldsymbol {\Psi }}_1\\ \end{array} \right ] $$
(50)

Using the backward substitutions, one can then solve easily for λ 2 and λ 1, which are given by

$$\begin{aligned} \boldsymbol {\lambda }_2 \equiv&\tilde{\mathbf{I}}_{2,2}^{-1} \widetilde{\boldsymbol {\Psi }}_2 \end{aligned}$$
(51)
$$\begin{aligned} \boldsymbol {\lambda }_1 \equiv&\tilde{\mathbf{I}}_{1,1}^{-1} \bigl(\overline{\boldsymbol {\Psi }}_1 - \overline{\mathbf{I}}_{2,1}^T \boldsymbol {\lambda }_2\bigr) \end{aligned}$$
(52)

where \(\tilde{\mathbf{I}}_{2,2} \equiv\overline{\mathbf{I}}_{2,2} - \overline{\mathbf{I}}_{2,1}\overline{\mathbf{I}}_{1,1}^{-1}\overline{\mathbf{I}}_{2,1}^{T}\) and \(\widetilde{\boldsymbol {\Psi }}_{2} \equiv \overline{\boldsymbol {\Psi }}_{2} - \overline{\mathbf{I}}_{2,1}\overline{\mathbf{I}}_{1,1}^{-1}\overline{\boldsymbol {\Psi }}_{1}\).

Appendix A5: Block Gaussian elimination of the subsystem-level representation of (10) for the 3-RRR parallel manipulator

To illustrate that the results of (51)–(52) can also be obtained from the fundamental formulation given by (10), by using the subsystem-level expressions for the 3-RRR parallel manipulator, i.e., (37)–(40), (10) is rewritten as

$$ \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \mathbf{I}_1 & \mathbf{O} & \mathbf{O} & \mathbf{J}_{1,1}^T & \mathbf{J}_{2,1}^T\\ \mathbf{O} & \mathbf{I}_2 & \mathbf{O} & \mathbf{J}_{1,2}^T & \mathbf{O}\\ \mathbf{O} & \mathbf{O} & \mathbf{I}_3 & \mathbf{O} & \mathbf{J}_{2,3}^T\\ \mathbf{J}_{1,1} & \mathbf{J}_{1,2} & \mathbf{O} & \mathbf{O} & \mathbf{O}\\ \mathbf{J}_{2,1} & \mathbf{O} & \mathbf{J}_{2,3} & \mathbf{O} & \mathbf{O}\\ \end{array} \right ] \left [ \begin{array}{c} \ddot{\mathbf{q}}_1\\ \ddot{\mathbf{q}}_2\\ \ddot{\mathbf{q}}_3\\ -\boldsymbol {\lambda }_1\\ -\boldsymbol {\lambda }_2\\ \end{array} \right ] = \left [ \begin{array}{c} \boldsymbol {\upvarphi }_1\\ \boldsymbol {\upvarphi }_2\\ \boldsymbol {\upvarphi }_3\\ \boldsymbol {\Psi }_1\\ \boldsymbol {\Psi }_2\\ \end{array} \right ] $$
(53)

Applying the block Gaussian elimination, the final upper block triangular on the LHS is given by

$$ \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \mathbf{I}_1 & \mathbf{O} & \mathbf{O} & \mathbf{J}_{1,1}^T & \mathbf{J}_{2,1}^T\\ \mathbf{O} & \mathbf{I}_2 & \mathbf{O} & \mathbf{J}_{1,2}^T & \mathbf{O}\\ \mathbf{O} & \mathbf{O} & \mathbf{I}_3 & \mathbf{O} & \mathbf{J}_{2,3}^T\\ \mathbf{O} & \mathbf{O} & \mathbf{O} & -\overline{\mathbf{I}}_1^{11}-\overline{\mathbf{I}}_2^{11} & -\overline{\mathbf{I}}_1^{12}\\ \mathbf{O} & \mathbf{O} & \mathbf{O} & \mathbf{O} & -\overline{\mathbf{I}}_1^{22}-\overline{\mathbf{I}}_3^{22}+\overline{\mathbf{I}}_1^{21}(\overline{\mathbf{I}}_1^{11} + \overline{\mathbf{I}}_2^{11})^{-1}(\overline{\mathbf{I}}_1^{21})^T\\ \end{array} \right ] \left [ \begin{array}{c} \ddot{\mathbf{q}}_1\\ \ddot{\mathbf{q}}_2\\ \ddot{\mathbf{q}}_3\\ -\boldsymbol {\lambda }_1\\ -\boldsymbol {\lambda }_2\\ \end{array} \right ] = \left [ \begin{array}{c} \boldsymbol {\upvarphi }_1\\ \boldsymbol {\upvarphi }_2\\ \boldsymbol {\upvarphi }_3\\ \widetilde{\boldsymbol {\Psi }}_1\\ \widetilde{\boldsymbol {\Psi }}_2\\ \end{array} \right ] $$
(54)

where \(\widetilde{\boldsymbol {\Psi }}_{1}\equiv \boldsymbol {\Psi }_{1} - \mathbf{J}_{1,1}\mathbf{I}_{1}^{-1}\boldsymbol {\upvarphi }_{1} - \mathbf{J}_{1,2}\mathbf{I}_{2}^{-1} \boldsymbol {\upvarphi }_{2}\) and \(\widetilde{\boldsymbol {\Psi }}_{2}\equiv \boldsymbol{\Psi}_{2} - \mathbf{J}_{2,1}\mathbf{I}_{1}^{-1} \boldsymbol {\upvarphi }_{1} - \mathbf{J}_{2,3}\mathbf{I}_{3}^{-1}\boldsymbol {\upvarphi }_{3} - \mathbf{I}_{1}^{21} (\mathbf{I}_{1}^{11} + \mathbf{I}_{2}^{11})^{-1}\widetilde{\boldsymbol {\Psi }}_{1}\). The Lagrange multipliers are computed next using backward substitutions as

$$ \boldsymbol {\lambda }_2 \equiv\bigl[\overline{\mathbf{I}}_1^{22} + \overline{\mathbf{I}}_3^{22} - \overline{ \mathbf{I}}_1^{12}\bigl(\overline{\mathbf{I}}_1^{11} + \overline{\mathbf{I}}_2^{11}\bigr)^{-1}\bigl( \overline{\mathbf{I}}_1^{21}\bigr)^T \bigr]^{-1}\widetilde{\boldsymbol {\Psi }}_2 $$
(55)
$$ \boldsymbol {\lambda }_1 \equiv\bigl(\overline{\mathbf{I}}_1^{11} + \overline{\mathbf{I}}_2^{11}\bigr)^{-1}\bigl[ \overline{\boldsymbol {\Psi }}_1 - \bigl(\overline{\mathbf{I}}_1^{21} \bigr)^T\boldsymbol {\lambda }_2\bigr] $$
(56)

Substituting the expressions of (43) in (55)–(56), we get exactly the same expressions for λ 1 and λ 2 to that obtained in (51)–(52) and reported in (45)–(46). Note here that one could continue with the back substitutions to solve for the joint accelerations required in the forward dynamics. This is, however, not recommended here, mainly due to the fact that one is not able to exploit the already existing algorithms for the tree-type systems, which may be of recursive in nature, e.g., ReDySim of [30], with good efficiency and numerical stability.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koul, M., Shah, S.V., Saha, S.K. et al. Reduced-order forward dynamics of multiclosed-loop systems. Multibody Syst Dyn 31, 451–476 (2014). https://doi.org/10.1007/s11044-013-9379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9379-2

Keywords

Navigation