Skip to main content
Log in

3D walking biped: optimal swing of the arms

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A ballistic walking gait is designed for a 3D biped with two identical two-link legs, a torso, and two identical one-link arms. In the single support phase, the biped moves due to the existence of a momentum, produced mechanically, without applying active torques in the interlink joints. This biped is controlled with impulsive torques at the instantaneous double support to obtain a cyclic gait. The impulsive torques are applied in the seven interlink joints. Then an infinity of solutions exists to find the impulsive torques. An effort cost functional of these impulsive torques is minimized to determine a unique solution. Numerical results show that for a given time period and a given length of the walking gait step, there is an optimal swinging amplitude of the arms. For this optimal motion of the arms, the cost functional is minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Therefore, there is a permutation operation between \(\dot{\mathbf{X}}^{a}\) and the solution of the boundary value problem to take into account the exchange of the role of both legs.

References

  1. Ortega, J.D., Fehlman, L.A., Farley, C.T.: Effects of aging and arm swing on the metabolic cost of stability in human walking. J. Biomech. 41, 3303–3308 (2008)

    Article  Google Scholar 

  2. Collins, S.H., Adamczyk, P.G., Kuo, A.D.: Dynamic arm swinging in human walking. Proc. R. Soc. Lond. B, Biol. Sci. 276, 3679–3688 (2009). doi:10.1098/rspb.2009.0664

    Article  Google Scholar 

  3. Pontzer, H., Holloway, J.H., Raichlen, D.A., Lieberman, D.E.: Control and function of arm swing in human walking and running. J. Exp. Biol. 212, 523–534 (2009)

    Article  Google Scholar 

  4. Bruijn, S.M., Meijer, O.G., van Dieën, J.H., Kingma, I., Lamoth, C.J.C.: Coordination of leg swing, thorax rotations, and pelvis rotations during gait: the organisation of total body angular momentum. Gait Posture 27, 455–462 (2008)

    Article  Google Scholar 

  5. Umberger, B.R.: Effects of suppressing arm swing on kinematics, kinetics, and energetics of human walking. J. Biomech. 41, 2575–2580 (2008)

    Article  Google Scholar 

  6. Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B, Biol. Sci. 126, 136–195 (1938)

    Article  Google Scholar 

  7. Doke, J., Kuo, A.D.: Energetic cost of producing cyclic muscle force, rather than work, to swing the human leg. J. Exp. Biol. 210, 2390–2398 (2007)

    Article  Google Scholar 

  8. Vaughan, C.: Dynamics of Human Gait. Kiboho Publishers (1999)

  9. Formal’skii, A.M.: Motion of anthropomorphic biped under implusive control. In: Proc. of Institute of Mechanics, Moscow State Lomonosov University: “Some Questions of Robot’s Mechanics and Biomechnics”, pp. 17–34 (1978) (In Russian)

    Google Scholar 

  10. Formal’skii, A.: Locomotion of Anthropomorphic Mechanisms. Nauka, Moscow (1982) [In Russian]

    Google Scholar 

  11. Formal’skii, A.M.: Ballistic walking design via impulsive control. J. Aerosp. Eng. 23(2), 129–138 (2010)

    Article  MathSciNet  Google Scholar 

  12. Mochon, S., McMahon, T.: Ballistic walking: an improved model. Math. Biosci. 52, 241–260 (1981)

    Article  MathSciNet  Google Scholar 

  13. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  14. Hurmuzlu, Y., Chang, T.-H.: Rigid body collisions of a special class of planar kinematic chains. IEEE Trans. Syst. Man Cybern. 22(5), 964–971 (1992)

    Article  MATH  Google Scholar 

  15. Channon, P.H., Hopkins, S.H., Pham, D.T.: Derivation of optimal walking motions for a bipedal walking robot. Robotica 10(3), 165–172 (1992)

    Article  Google Scholar 

  16. Chevallereau, C., Aoustin, Y.: Optimal reference trajectories for walking and running of a biped. Robotica 19(5), 557–569 (2001)

    Article  Google Scholar 

  17. Gill, P., Murray, W., Wright, M.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  18. Powell, M.: Variable Metric Methods for Constrained Optimization. Lecture Notes in Mathematics, pp. 62–72. Springer, Berlin (1977)

    Google Scholar 

  19. Aoustin, Y., Formal’sky, A.M.: On optimal swinging of the biped arms. In: Proc. IEEE Int. Conf. on Intelligent Robots and Systems IROS, Nice, France, pp. 2922–2927 (2008)

    Google Scholar 

  20. Eke-Okoro, S.T., Gregoric, M., Larson, L.E.: Alterations in gait resulting from deliberate changes of arm-swing amplitude and phase. Clin. Biomech. 12(7/8), 516–521 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Education and Science of Russian Federation, Project 07.524.11.4012 and CNRS via a Project of International Collaboration Scientific, PICS 3866. Cooperation agreement CNRS/Russian Academy of Sciences (EDC25146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Aoustin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoustin, Y., Formalskii, A.M. 3D walking biped: optimal swing of the arms. Multibody Syst Dyn 32, 55–66 (2014). https://doi.org/10.1007/s11044-013-9378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9378-3

Keywords

Navigation