Skip to main content

Modeling and Control of Dynamically Walking Bipedal Robots

  • Chapter
Modeling, Simulation and Optimization of Bipedal Walking

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 18))

Abstract

Today’s bipedal robots still cannot compete with humans regarding efficiency, velocity, and robustness of locomotion. Thus, this paper suggests a control concept for dynamic walking based on insights into human motion control. Key features include exploitation of passive dynamics, hierarchical control, and reflexes, while not requiring a full dynamical model.Walking stability is achieved by a set of postural reflexes based on the motion of the extrapolated center of mass. It shows that only a small number of joints must be simultaneously actively actuated during the different phases of walking. Besides the control concept, the anthropomorphic biped model and its properties like compliant actuation are presented as they prove to be essential for the walking performance. Specifically, the approach requires non self-locking and torque-controllable joints with parallel elasticity and low friction, similar to the human muscle-tendon system. The approach is validated for 3D dynamic walking within a physical simulation framework. Results show an efficient, fluent, and fast gait that can cope with considerable disturbances. The resulting joint trajectories show significant resemblance to human walking data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, N.: The co-ordination and regulation of movements. Pergamon (1967)

    Google Scholar 

  2. Bizzi, E., Cheung, V., d’Avella, A., Saltiel, P., Tresch, M.: Combining modules for movement. Brain Research Reviews 57 (2007)

    Google Scholar 

  3. Blank, S., Wahl, T., Luksch, T., Berns, K.: Biologically inspired compliant control of a monopod designed for highly dynamic applications. In: Proc. of IEEE Int. Conf. on Intelligent Robots and Systems (2009)

    Google Scholar 

  4. Blickhan, R., Seyfarth, A., Geyer, H., Grimmer, S., Wagner, H., Günther, M.: Intelligence by mechanics. Philosophical Transactions of the Royal Society of London, Series A 365 (2007)

    Google Scholar 

  5. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307 (2005)

    Google Scholar 

  6. Endo, G., Nakanishi, J., Morimoto, J., Cheng, G.: Experimental studies of a neural oscillator for biped locomotion with QRIO. In: Proc. of IEEE Int. Conf. on Robotics and Automation (2005)

    Google Scholar 

  7. Fischer, M., Blickhan, R.: The tri-segmented limbs of therian mammals: kinematics, dynamics, and self-stabilization - a review. Journal of Experimental Zoology Part A: Comparative Experimental Biology 305A(11) (2006)

    Google Scholar 

  8. Hof, A.: The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Human Movement Science 27(1) (2008)

    Google Scholar 

  9. Horak, F.B.: Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and Ageing 35-S2 (2006)

    Google Scholar 

  10. Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Motor control programs and walking. The Neuroscientist 12(4) (2006)

    Google Scholar 

  11. Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., Akachi, K.: Humanoid robot HRP-3. In: Proc. of IEEE Int. Conf. on Intelligent Robots and Systems (2008)

    Google Scholar 

  12. Kim, J., Park, I., Oh, J.: Walking control algorithm of biped humanoid robot on uneven and inclined floor. Journal of Intelligent and Robotic Systems 48(4) (2007)

    Google Scholar 

  13. Luksch, T.: Human-like Control of Dynamically Walking Bipedal Robots. RRLab Dissertations. Verlag Dr. Hut (2010)

    Google Scholar 

  14. Luksch, T., Berns, K.: Controlling dynamic motions of biped robots with reflexes and motor patterns. In: Proc. of Int. Symposium on Adaptive Motion of Animals and Machines (2008)

    Google Scholar 

  15. Luksch, T., Berns, K.: Initiating normal walking of a dynamic biped with a biologically motivated control. In: Proc. of Int. Conf. on Climbing and Walking Robots (2008)

    Google Scholar 

  16. Luksch, T., Berns, K., Mombaur, K., Schultz, G.: Using optimization techniques for the design and control of fast bipeds. In: Proc. of Int. Conf. on Climbing and Walking Robots (2007)

    Google Scholar 

  17. Manoonpong, P., Geng, T., Porr, B., Wörgötter, F.: The RunBot architecture for adaptive, fast, dynamic walking. In: Proc. of IEEE Symposium on Circuits and Systems (2007)

    Google Scholar 

  18. Pratt, J.: Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots. PhD thesis. MIT Press, Cambridge (2000)

    Google Scholar 

  19. Proetzsch, M., Luksch, T., Berns, K.: Development of complex robotic systems using the behavior-based control architecture iB2C. Robotics and Autonomous Systems 58(1) (2010)

    Google Scholar 

  20. Rossignol, S., Dubuc, R., Gossard, J.P.: Dynamic sensorimotor interactions in locomotion. Physiological Reviews 86 (2006)

    Google Scholar 

  21. Takenaka, T., Matsumoto, T., Yoshiike, T., Shirokura, S.: Real time motion generation and control for biped robot. In: Proc. of IEEE Int. Conf. on Intelligent Robots and Systems (2009)

    Google Scholar 

  22. Todorov, E.: Optimality principles in sensorimotor control. Nature Neuroscience 7(9) (2004)

    Google Scholar 

  23. Vanderborght, B., Verrelst, B., Ham, R.V., Damme, M.V., Beyl, P., Lefeber, D.: Development of a compliance controller to reduce energy consumption for bipedal robots. Autonomous Robots 24(4) (2008)

    Google Scholar 

  24. Vaughan, C., Davis, B., O’Connor, J.: Dynamics of human gait. Human Kinetics Publishers, Champaign (1992)

    Google Scholar 

  25. Vukobratovic, M., Borovac, B.: Zero-Moment Point - thirty five years of its life. International Journal of Humanoid Robotics 1 (2004)

    Google Scholar 

  26. Witte, H., Hoffmann, H., Hackert, R., Schilling, C., Fischer, M., Preuschoft, H.: Biomimetic robotics should be based on functional morphology. Journal of Anatomy 204(5) (2004)

    Google Scholar 

  27. Zaier, R., Kanda, S.: Adaptive locomotion controller and reflex system for humanoid robots. In: Proc. of IEEE Int. Conf. on Intelligent Robots and Systems (2008)

    Google Scholar 

  28. Zehr, E., Stein, R.B., Komiyama, T.: Function of sural nerve reflexes during human walking. The Journal of Physiology 507(1) (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Luksch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luksch, T., Berns, K. (2013). Modeling and Control of Dynamically Walking Bipedal Robots. In: Mombaur, K., Berns, K. (eds) Modeling, Simulation and Optimization of Bipedal Walking. Cognitive Systems Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36368-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36368-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36367-2

  • Online ISBN: 978-3-642-36368-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics