Skip to main content

Advertisement

Log in

Hybrid predictive dynamics: a new approach to simulate human motion

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A new methodology, called hybrid predictive dynamics (HPD), is introduced in this work to simulate human motion. HPD is defined as an optimization-based motion prediction approach in which the joint angle control points are unknowns in the equations of motion. Some of these control points are bounded by the experimental data. The joint torque and ground reaction forces are calculated by an inverse algorithm in the optimization procedure. Therefore, the proposed method is able to incorporate motion capture data into the formulation to predict natural and subject-specific human motions. Hybrid predictive dynamics includes three procedures, and each is a sub-optimization problem. First, the motion capture data are transferred from Cartesian space into joint space by using optimization-based inverse kinematics (IK) methodology. Secondly, joint profiles obtained from IK are interpolated by B-spline control points by using an error-minimization algorithm. Third, boundaries are built on the control points to represent specific joint profiles from experiments, and these boundaries are used to guide the predicted human motion. To predict more accurate motion, the boundaries can also be built on the kinetic variables if the experimental data are available. The efficiency of the method is demonstrated by simulating a box-lifting motion. The proposed method takes advantage of both prediction and tracking capabilities simultaneously, so that HPD has more applications in human motion prediction, especially towards clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

q IK::

Joint angles from inverse kinematics

\(\tilde{X}_{i}^{k}\)::

Cartesian coordinates of key joint centers from motion capture

\(\tilde{X}_{i}^{g}\)::

Cartesian coordinates of guiding joint centers from motion capture

P i ::

Control points for ith DOF

\(t_{i}^{k}\)::

The ith key event time point

Ω::

Time interval of interest

ε IN::

The error of the interpolation function

F G::

Ground reaction forces

F A::

Applied external loads

g::

Task-based constraints

q::

Joint angle profile

τ::

Joint torque profile

t::

Time knot vector

B(t)::

B-spline basis function

\(\mathop{(\bullet )}\limits^{\bullet}\)::

The derivative with respect to time

N dof::

The number of degrees of freedom of the mechanical system

f i ::

The ith objective function

(P ,t )::

The control points and knot vector from the mechanical model optimal solution

(\(\bar{\mathbf{P}}^{*}, \bar{\mathbf{t}}^{*}\))::

The control points and knot vector form the motion capture

e P::

The variation on control point P

e t::

The variation on knot vector point t

Φ(F G)::

A function of the contacting forces F G

c(F G)::

The friction constraints on each contacting point

DOF::

Degrees of freedom

GRF::

Ground reaction forces

ZMP::

Zero moment point

IK::

Inverse kinematics

PD::

Predictive dynamics

HPD::

Hybrid predictive dynamics

SQP::

Sequential quadratic programming

NLP::

Nonlinear programming

DH::

Denavit-Hartenberg method

MOO::

Multi-objective optimization

References

  1. Arora, J.S.: Introduction to Optimum Design, 3rd edn. Academic Press, San Diego (2011)

    Google Scholar 

  2. Arora, J.S.: Formulating Design Problems as Optimization Problems. Encyclopedia of Aerospace Engineering, vol. 8(6), Chap. 1. Wiley, New York (2010)

    Google Scholar 

  3. Arora, J.S., Wang, Q.: Review of formulations for structural and mechanical system optimization. Struct. Multidiscip. Optim. 30(4), 251–272 (2005)

    Article  MathSciNet  Google Scholar 

  4. Arora, J.S., Elwakeil, O.A., Chahande, A.I., Hsieh, C.C.: Global optimization methods for engineering applications—a review. Struct. Multidiscip. Optim. 9(3–4), 137–159 (1995)

    Google Scholar 

  5. Ackermann, M., van den Bogert, A.J.: Optimality principles for model-based prediction of human gait. J. Biomech. 43(6), 1055–1060 (2010)

    Article  Google Scholar 

  6. Arnold, A.S., Thelen, D.G., Schwartz, M.H., Anderson, F.C., Delp, S.L.: Muscular coordination of knee motion during the terminal-swing phase of normal gait. J. Biomech. 40(15), 3314–3324 (2007)

    Article  Google Scholar 

  7. Anderson, M.S., Damsgaard, M., Rasmussen, J.: A study of the effects of two different kinematical analysis methods on the calculated muscle activities in an inverse dynamics-based musculoskeletal model of gait. In: 20th Nordic Seminar on Computational Mechanics, Gothenburg, Sweden (2007)

    Google Scholar 

  8. Bessonnet, G., Chesse, S., Sardain, P.: Optimal gait synthesis of a seven-link planar biped. Int. J. Robot. Res. 23(10–11), 1059–1073 (2004)

    Article  Google Scholar 

  9. Bessonnet, G., Seguin, P., Sardain, P.: A parametric optimization approach to walking pattern synthesis. Int. J. Robot. Res. 24(7), 523–536 (2005)

    Article  Google Scholar 

  10. Bessonnet, G., Marot, J., Seguin, P., Sardain, P.: Parametric-based dynamic synthesis of 3D-gait. Robotica 28(4), 563–581 (2010)

    Article  Google Scholar 

  11. Bottasso, C.L., Prilutsky, B.I., Croce, A., Imberti, E., Sartirana, S.: A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system. Multibody Syst. Dyn. 16(2), 123–154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cappozzo, A., Catani, F., Croce, U.D., Leardini, A.: Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin. Biomech. 10(4), 171–178 (1995)

    Article  Google Scholar 

  13. Capi, G., Yokota, M., Mitobe, K.: Optimal multi-criteria humanoid robot gait synthesis—an evolutionary approach. Int. J. Innov. Comput. Inf. Control 2(6), 1249–1258 (2006)

    Google Scholar 

  14. Chen, J.S., Cheng, F.T., Yang, K.T., Kung, F.C., Sun, Y.Y.: Optimal force distribution in multilegged vehicles. Robotica 17(2), 159–172 (1999)

    Article  Google Scholar 

  15. Cheng, F.T., Orin, D.E.: Efficient algorithm for optimal force distribution-the compact-dual LP method. IEEE Trans. Robot. Autom. 6(2), 178–187 (1990)

    Article  Google Scholar 

  16. Cheng, F.T., Orin, D.E.: Optimal force distribution in multiple-chain robotic system. IEEE Trans. Syst. Man Cybern. 21(1), 13–24 (1991)

    Article  Google Scholar 

  17. Cheng, F.T., Orin, D.E.: Efficient formulation of the force distribution equations for simple closed-chain robotic mechanisms. IEEE Trans. Syst. Man Cybern. 21(1), 25–32 (1991)

    Article  Google Scholar 

  18. Chevallereau, C., Aoustin, Y.: Optimal reference trajectories for walking and running of a biped robot. Robotica 19, 557–569 (2001)

    Article  Google Scholar 

  19. Dasgupta, A., Nakamura, Y.: Making feasible walking motion of humanoid robots from human motion capture data. In: IEEE International Conference on Robotics and Automation, Detroit, MI, USA, pp. 1044–1049 (1999)

    Google Scholar 

  20. Davy, D.T., Audu, M.L.: A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J. Biomech. 20(2), 187–201 (1987)

    Article  Google Scholar 

  21. Della Croce, U., Cappozzo, A., Kerrigan, D.C.: Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles. Med. Biol. Eng. Comput. 37(2), 155–161 (1999)

    Article  Google Scholar 

  22. Delp, S.L., Loan, J.P.: A computational framework for simulating and analysing human and animal movement. Comput. Sci. Eng. 2(5), 46–55 (2000)

    Article  Google Scholar 

  23. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 22, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  24. Eriksson, A.: Optimization in target movement simulations. Comput. Methods Appl. Mech. Eng. 197, 4207–4215 (2008)

    Article  MATH  Google Scholar 

  25. Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.J.: Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22, 131–154 (2007)

    Article  Google Scholar 

  26. Fregly, B.J., Reinbolt, J.A., Rooney, K.L., Mitchell, K.H., Chmielewski, T.L.: Design of patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE Trans. Biomed. Eng. 54(9), 1687–1695 (2007)

    Article  Google Scholar 

  27. Fu, K.S., Gonzalez, R.C., Lee, C.S.G.: Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill, New York (1987)

    Google Scholar 

  28. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12, 979–1006 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ha, T., Choi, C.H.: An effective trajectory generation method for bipedal walking. Robot. Auton. Syst. 55(10), 795–810 (2007)

    Article  Google Scholar 

  30. Hamner, S.R., Seth, A., Delp, S.L.: Muscle contributions to propulsion and support during running. J. Biomech. 43(14), 2709–2716 (2010)

    Article  Google Scholar 

  31. Hariri, M.: A study of optimization-based predictive dynamics method for digital human modeling. Ph.D. Thesis, The University of Iowa, Iowa city, IA, USA (2012)

  32. Hollerbach, J.M.: A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans. Syst. Man Cybern. 11(10), 730–736 (1980)

    Article  MathSciNet  Google Scholar 

  33. Hu, L.Y., Zhou, C.J., Sun, Z.Q.: Estimating biped gait using spline-based probability distribution function with Q-learning. IEEE Trans. Ind. Electron. 55(3), 1444–1452 (2008)

    Article  Google Scholar 

  34. Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., Tanie, K.: Planning walking patterns for a biped robot. IEEE Trans. Robot. Autom. 17(3), 280–289 (2001)

    Article  Google Scholar 

  35. Hurmuzlu, Y.: Dynamics of bipedal gait. 2. Stability analysis of a planar 5-link biped. J. Appl. Mech. 60(2), 337–343 (1993)

    Article  Google Scholar 

  36. Hurmuzlu, Y., Ephanov, A.: Generating pathological gait patterns via the use of robotic locomotion models. J. Health Care Technol. 10, 135–146 (2002)

    Google Scholar 

  37. Hurmuzlu, Y., Genot, F., Brogliato, B.: Modeling, stability and control of biped robots—a general framework. Automatica 40(10), 1647–1664 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kang, B.S., Park, G.J., Arora, J.S.: A review of optimization of structures subjected to transient loads. Struct. Multidiscip. Optim. 31(2), 81–95 (2005)

    Article  MathSciNet  Google Scholar 

  39. Kim, H.J., Horn, E., Arora, J.S., Abdel-Malek, K.: An optimization-based methodology to predict digital human gait motion. In: Proceedings of Digital Human Modeling for Design and Engineering, Iowa City, IA (2005)

    Google Scholar 

  40. Kim, H.J., Wang, Q., Rahmatalla, S., Swan, C.C., Arora, J.S., Abdel-Malek, K., Assouline, J.G.: Dynamic motion planning of 3D human locomotion using gradient-based optimization. J. Biomech. Eng. 130(3), 031002 (2008)

    Article  Google Scholar 

  41. Kim, J.H., Abdel-Malek, K., Yang, J., Marler, R.T.: Prediction and analysis of human motion dynamics performing various tasks. Int. J. Human Factors Model. Simul. 1(1), 69–94 (2006)

    Article  Google Scholar 

  42. Kim, J.H., Xiang, Y., Bhatt, R., Yang, J., Chung, H.J., Arora, J.S., Abdel-Malek, K.: Generating effective whole-body motions of a human-like mechanism with efficient ZMP formulation. Int. J. Robot. Autom. 24(2), 125–136 (2009)

    Google Scholar 

  43. Kim, J.H., Xiang, Y., Yang, J., Arora, J.S., Abdel-Malek, K.: Dynamic motion planning of overarm throw for a biped human multibody system. Multibody Syst. Dyn. 24(1), 1–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kim, J.H., Abdel-Malek, K., Xiang, Y., Yang, J., Arora, J.S.: Concurrent motion planning and reaction load distribution for redundant dynamic systems under external holonomic constraints. Int. J. Numer. Methods Eng. 88, 47–65 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kim, J.G., Baek, J.H., Park, F.C.: Newton-type algorithms for robot motion optimization. In: Proceedings of the 1999 IEEE International Conference on Intelligent Robots and Systems, Kyongju, South Korea, pp. 1842–1847 (1999)

    Google Scholar 

  46. Kuo, A.D.: A simple model of bipedal walking predicts the preferred speed-step length relationship. J. Biomech. Eng. 123(3), 264–269 (2001)

    Article  Google Scholar 

  47. Lin, Y.C., Walter, J.P., Banks, S.A., Pandy, M.G., Fregly, B.J.: Simultaneous prediction of muscle and contact forces in the knee during gait. J. Biomech. 43(5), 945–952 (2010)

    Article  Google Scholar 

  48. Leboeuf, F., Bessonnet, G., Seguin, P., Lacouture, P.: Energetic versus sthenic optimality criteria for gymnastic movement synthesis. Multibody Syst. Dyn. 16(3), 213–236 (2006)

    Article  MATH  Google Scholar 

  49. Lo, J., Huang, G., Metaxas, D.: Human motion planning based on recursive dynamics and optimal control techniques. Multibody Syst. Dyn. 8(4), 433–458 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mahboobin, A., Cham, R., Piazza, S.J.: The impact of a systematic reduction in shoe-floor friction on heel contact walking kinematics-A gait simulation approach. J. Biomech. 43(8), 1532–1539 (2010)

    Article  Google Scholar 

  51. Mijar, A.R., Arora, J.S.: An augmented Lagrangian optimization method for contact analysis problems, 1: formulation and algorithm. Struct. Multidiscip. Optim. 28(2–3), 99–112 (2004)

    MathSciNet  Google Scholar 

  52. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  Google Scholar 

  53. Marshall, R.N., Wood, G.A., Jennings, L.S.: Performance objectives in human movement: a review and application to the stance phase of normal walking. Hum. Mov. Sci. 8(6), 571–594 (1989)

    Article  Google Scholar 

  54. Mu, X., Wu, Q.: Synthesis of a complete sagittal gait cycle for a five-link biped robot. Robotica 21, 581–587 (2003)

    Article  Google Scholar 

  55. Neptune, R.R., Kautz, S.A., Zajac, F.E.: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 34, 1387–1398 (2001)

    Article  Google Scholar 

  56. Neptune, R.R., Sasaki, K., Kautz, S.A.: The effect of walking speed on muscle function and mechanical energetics. Gait Posture 28(1), 135–143 (2008)

    Article  Google Scholar 

  57. Neptune, R.R., Clark, D.J., Kautz, S.A.: Modular control of human walking: a simulation study. J. Biomech. 42, 1282–1287 (2009)

    Article  Google Scholar 

  58. Pandy, M.G.: Computer modeling and simulation of human movement. Annu. Rev. Biomed. Eng. 3, 245–273 (2001)

    Article  Google Scholar 

  59. Pandy, M.G., Andriacchi, T.P.: Muscle and joint function in human locomotion. Annu. Rev. Biomed. Eng. 12, 401–433 (2010)

    Article  Google Scholar 

  60. Park, J.H., Khatib, O.: Robot multiple contact control. Robotica 26(05), 667–677 (2008)

    Article  Google Scholar 

  61. Pedersen, D.R., Brand, R.A., Cheng, C., Arora, J.S.: Direct comparison of muscle force predictions using linear and nonlinear programming. J. Biomech. Eng. 109(3), 192–199 (1987)

    Article  Google Scholar 

  62. Piazza, S.J., Delp, S.L.: The influence of muscles on knee flexion during the swing phase of gait. J. Biomech. 29(6), 723–733 (1996)

    Article  Google Scholar 

  63. Rahmatalla, S., Xiang, Y., Smith, R., Meusch, J., Li, J., Marler, T., Smith, B.: Validation of lower-body posture prediction for the virtual human model SantosTM. In: Proceedings of SAE Digital Human Modeling for Design and Engineering, Goteborg, Sweden (2009)

    Google Scholar 

  64. Rahmatalla, S., Xiang, Y., Smith, R., Meusch, J., Bhatt, R.: A validation framework for predictive human models. Int. J. Human Factors Model. Simul. 2(1/2), 67–84 (2011)

    Article  Google Scholar 

  65. Rasmussen, J., Damsgaard, M., Voigt, M.: Muscle recruitment by the min/max criterion—a comparative numerical study. J. Biomech. 34(3), 409–415 (2001)

    Article  Google Scholar 

  66. Ren, L., Jones, R.K., Howard, D.: Predictive modelling of human walking over a complete gait cycle. J. Biomech. 40(7), 1567–1574 (2007)

    Article  Google Scholar 

  67. Ren, L., Jones, R.K., Howard, D.: Dynamic analysis of load carriage biomechanics during level walking. J. Biomech. 38(4), 853–863 (2005)

    Article  Google Scholar 

  68. Rostami, M., Bessonnet, G.: Sagittal gait of a biped robot during the single support phase. Part 2: optimal motion. Robotica 19, 241–253 (2001)

    Google Scholar 

  69. Roussel, L., Canudas-de-Wit, C., Goswami, A.: Generation of energy optimal complete gait cycles for biped. In: Proc. IEEE Int. Conf. Rob. & Auto., vol. 3, pp. 2036–2042 (1998)

    Google Scholar 

  70. Saidouni, T., Bessonnet, G.: Generating globally optimised sagittal gait cycles of a biped robot. Robotica 21, 199–210 (2003)

    Article  Google Scholar 

  71. Sohl, G.A., Bobrow, J.E.: A recursive multibody dynamics and sensitivity algorithm for branched kinematic chains. J. Dyn. Syst. Meas. Control 123(3), 391–399 (2001)

    Article  Google Scholar 

  72. Srinivasan, M., Ruina, A.: Computer optimization of a minimal biped model discovers walking and running. Nature 439(7072), 72–75 (2006)

    Article  Google Scholar 

  73. Thelen, D.G., Anderson, F.C.: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39(6), 1107–1115 (2006)

    Article  Google Scholar 

  74. Toogood, R.W.: Efficient robot inverse and direct dynamics algorithms using micro-computer based symbolic generation. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 1827–1832 (1989)

    Google Scholar 

  75. Tlalolini, D., Aoustin, Y., Chevallereau, C.: Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization. Multibody Syst. Dyn. 23, 33–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  76. Vaughan, C.L.: Theories of bipedal walking: an odyssey. J. Biomech. 36(4), 513–523 (2003)

    Article  Google Scholar 

  77. Vukobratović, M., Borovac, B.: Zero-moment point—thirty five years of its life. Int. J. Humanoid Robot. 1(1), 157–173 (2004)

    Article  Google Scholar 

  78. Wang, C.Y.E., Bobrow, J.E., Reinkensmeyer, D.J.: Dynamic motion planning for the design of robotic gait rehabilitation. J. Biomech. Eng. 127(4), 672–679 (2005)

    Article  Google Scholar 

  79. Wang, Q., Xiang, Y., Arora, J.S., Abdel-Malek, K.: Alternative formulations for optimization-based human gait planning. In: 48thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii (2007)

    Google Scholar 

  80. Wang, Q., Arora, J.S.: Several simultaneous formulations for transient dynamic response optimization: an evaluation. Int. J. Numer. Methods Eng. 80(5), 631–650 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  81. Winter, D.A.: The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. University of Waterloo Press, Waterloo (1991)

    Google Scholar 

  82. Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Berlin, Heidelberg (2006)

    Book  MATH  Google Scholar 

  83. Xiang, Y., Wang, Q., Fan, Z., Fang, H.: Optimal crashworthiness design of a spot-welded thin-walled hat section. Finite Elem. Anal. Des. 42, 846–855 (2006)

    Article  Google Scholar 

  84. Xiang, Y., Chung, H.J., Mathai, A., Rahmatalla, S., Kim, J.H., Marler, T., Beck, S., Yang, J., Arora, J.S., Abdel-Malek, K., Obusek, J.: Optimization-based dynamic human walking prediction. In: Proceedings of SAE Digital Human Modeling for Design and Engineering, Seattle, WA (2007)

    Google Scholar 

  85. Xiang, Y.: Optimization-based dynamic human walking prediction. Ph.D. thesis, The University of Iowa, Iowa City, IA, USA (2008)

  86. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Optimization-based motion prediction of mechanical systems: sensitivity analysis. Struct. Multidiscip. Optim. 37(6), 595–608 (2009)

    Article  MathSciNet  Google Scholar 

  87. Xiang, Y., Arora, J.S., Rahmatalla, S., Abdel-Malek, K.: Optimization-based dynamic human walking prediction: one step formulation. Int. J. Numer. Methods Eng. 79(6), 667–695 (2009)

    Article  MATH  Google Scholar 

  88. Xiang, Y., Chung, H.J., Kim, J.H., Bhatt, R., Rahmatalla, S., Yang, J., Marler, T., Arora, J.S., Abdel-Malek, K.: Predictive dynamics: an optimization-based novel approach for human motion simulation. Struct. Multidiscip. Optim. 41(3), 465–479 (2010)

    Article  MathSciNet  Google Scholar 

  89. Xiang, Y., Arora, J.S., Rahmatalla, S., Marler, T., Bhatt, R., Abdel-Malek, K.: Human lifting simulation using a multi-objective optimization approach. Multibody Syst. Dyn. 23(4), 431–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  90. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Physics-based modeling and simulation of human walking: a review of optimization-based and other approaches. Struct. Multidiscip. Optim. 42, 1–23 (2010)

    Article  MathSciNet  Google Scholar 

  91. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Optimization-based prediction of asymmetric human gait. J. Biomech. 44(4), 683–693 (2011)

    Article  Google Scholar 

  92. Xiang, Y., Rahmatalla, S., Arora, J.S., Abdel-Malek, K.: Enhanced optimization-based inverse kinematics methodology considering skeletal discomfort. Int. J. Human Factors Model. Simul. 2(1/2), 111–126 (2011)

    Article  Google Scholar 

  93. Xiang, Y., Arora, J.S., Chung, H.J., Kwon, H.J., Rahmatalla, S., Bhatt, R., Abdel-Malek, K.: Predictive simulation of human walking transitions using an optimization formulation. Struct. Multidiscip. Optim. (2012). doi:10.1007/s00158-011-0712-1

    Google Scholar 

  94. Xiang, Y., Arora, J.S., Abdel-Malek, K.: 3D human lifting motion prediction with different performance measures. Int. J. Human. Robot. (2012, in press)

  95. Xia, T., Frey Law, L.A.: A theoretical approach for modeling peripheral muscle fatigue and recovery. J. Biomech. 41(14), 3046–3052 (2008)

    Article  Google Scholar 

  96. Yamaguchi, G.T., Moran, D.W., Si, J.: A computationally efficient method for solving the redundant problem in biomechanics. J. Biomech. 28, 999–1005 (1995)

    Article  Google Scholar 

  97. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411 (1989)

    Google Scholar 

  98. Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking. Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16(3), 215–232 (2002)

    Article  Google Scholar 

  99. Zajac, F.E., Neptune, R.R.: Kautz, S.A: Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications. Gait Posture 17(1), 1–17 (2003)

    Article  Google Scholar 

  100. Zhang, Y., Chew, C.M.: Fast equilibrium test and force distribution for multicontact robotic systems. J. Mech. Robot. 2, 021001 (2010)

    Article  Google Scholar 

  101. Zheng, Y., Qian, W.H.: A fast procedure for optimizing dynamic force distribution in multifingered grasping. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 36(6), 1417–1422 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by projects from US Army TACOM, US Army Natick Soldier Systems Research Center, and US Navy. The authors would like to thank reviewers for their insightful and constructive comments. We would also like to thank all the colleagues at the University of Iowa for fruitful discussions on the subject of PD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujiang Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Y., Arora, J.S. & Abdel-Malek, K. Hybrid predictive dynamics: a new approach to simulate human motion. Multibody Syst Dyn 28, 199–224 (2012). https://doi.org/10.1007/s11044-012-9306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9306-y

Keywords

Navigation