Skip to main content
Log in

Non-jamming conditions in multi-contact rigid-body dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses an issue related to a multi-rigid-body frictional contact application, the non-jamming condition for the applying force such that the workpiece can move while maintaining existing contacts. The issue arises from the study of fixture loading planning. While rigid-body frictional contacts could restrict workpiece motion in both normal and tangential directions, it is found that the reason for jamming is from the tangential constraints by frictional forces. We first enumerate all the possible contact states for multiple contacts, and the contact constraints are classified into two categories, the configuration constraints and kinematic constraints. We then find an interesting result related with a non-jamming condition. That is, in a general situation, the applying force that can induce all-sliding contacts will never result in jamming. Moreover, a method to find the applied force on the workpiece that results in sliding on all contact points is presented, based on the sufficient condition for non-jamming. Numerical examples are presented and the results of the method are compared with the results of a quasi-static method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Painlevé, P.: Sur les lois du frottement de glissement. C. R. l’Acad. Sci. 121, 112–115 (1895)

    Google Scholar 

  2. Mason, M.T., Wang, Y.: On the inconsistency of rigid-body frictional planar mechanics. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 524–528. Philadelphia, PA, April (1988)

  3. Dupont, P.E., Yamajako, S.P.: Jamming and wedging in constrained rigid-body dynamics. In: Proceedings of 1994 IEEE International Conference on Robotics and Automation, pp. 2349–2354 (1994)

  4. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3–39 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Trinkle, J., Zeng, D.: Prediction of the quasistatic planar motion of a contacted rigidbody. IEEE Trans. Robot. Autom. 11(2), 229–246 (1995)

    Article  Google Scholar 

  6. Trinkle, J.C., Yeap, S.L., Han, L.: When quasistatic jamming is impossible. In: Proceedings of 1996 IEEE International Conference on Robotics and Automation (1996)

  7. Asada, H., By, A.B.: Kinematics analysis of workpart fixturing for flexible assembly with automatically reconfigurable fixtures. IEEE J. Robot. Autom. RA-1(2), 86–93 (1985)

    Google Scholar 

  8. Chou, Y.-C., Chandru, V., Barash, M.M.: A mathematical approach to automated configuration of machining fixtures: Analysis and synthesis. J. Eng. Ind. 111, 299–306 (1989)

    Article  Google Scholar 

  9. Markenscoff, X., Ni, L., Papadimitriou, C.H.: The geometry of grasping. Int. J. Robot. Res. 9(1), 61–74 (1990)

    Article  Google Scholar 

  10. Cai, W., Hu, S.J., Yuan, J.: A variational method of robust fixture configuration design for 3-d workpieces. J. Manuf. Sci. Eng. 119, 593–602 (1997)

    Article  Google Scholar 

  11. Wang, M.Y.: An optimal design for 3-d fixture synthesis in a point set domain. IEEE Trans. Robot. Autom. 16(6), 839–846 (2000)

    Article  Google Scholar 

  12. Wang, M.Y., Liu, T., Pelinescu, D.M.: Fixture kinematic analysis based on the full contact model of rigid bodies. ASME Trans. J. Manuf. Sci. Eng. 125(2), 316–324 (2003)

    Article  Google Scholar 

  13. Weck, M., Bibring, H.: Handbook of Machine Tools, vol. 1. Wiley, New York (1984)

    Google Scholar 

  14. Wang, M.Y., Pelinescu, D.M.: Contact force prediction and force closure analysis of a fixtured rigid workpiece with friction. J. Manuf. Sci. Eng. 125(2), 325–332 (2003)

    Article  Google Scholar 

  15. Schimmels, J.M., Peshkin, M.A.: Force-assembly with friction. IEEE Trans. Robot. Autom. 10(4), 465–479 (1994)

    Article  Google Scholar 

  16. Baraff, D.: Fast contact force computation for nonpenetrating rigid bodies. In: Computer Graphics Proceedings, Annual Conference Series, pp. 23–34. Orlando (1994)

  17. Förg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14(2), 137–154 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn. 13(4), 447–463 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pfeiffer, F., Förg, M., Ulbrich, H.: Numerical aspects of non-smooth multibody dynamics. Comput. Methods Appl. Mech. Eng. 195(50–51), 6891–6908 (2006)

    Article  MATH  Google Scholar 

  20. Pang, J., Trinkle, J.: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with coulomb friction. Math. Program. 73, 139–154 (1996)

    Article  MathSciNet  Google Scholar 

  21. Tzitzouris, J. Jr.: Numerical resolution of frictional multi-rigid-body systems via fully implicit time-stepping and nonlinear complementarity. Ph.D. Dissertation, The Johns Hopkins University, Baltimore, Maryland, 2001

  22. Ding, D., Liu, Y.-H., Wang, S.: Computation of 3-d force-closure grasps. IEEE Trans. Robot. Autom. 17(4), 515–522 (2001)

    Article  Google Scholar 

  23. Abadie, M.: Dynamic simulation of rigid bodies: Modelling of frictional contact. In: Brogliato, B. (ed.) Impacts in Mechanical Systems: Analysis and Modelling, pp. 61–144. Springer, Berlin (2000)

    Google Scholar 

  24. Liu, T., Wang, M.Y.: Computation of three-dimensional rigid-body dynamics with multiple unilateral contacts using time-stepping and Gauss-Seidel methods. IEEE Trans. Autom. Sci. Eng. 2(1), 19–31 (2005)

    Article  Google Scholar 

  25. Whitney, D.E.: Quasi-static assembly of compliantly supported rigid parts. J. Dyn. Syst. Meas. Control 104, 65–77 (1982)

    Article  MATH  Google Scholar 

  26. Trinkle, J.C., Balkcom, D., Gottlieb, E.J.: Computing wrench cones for planar contact tasks. In: Proceedings of 2002 IEEE International Conference on Robotics and Automation, pp. 869–875. Washington, DC (2002)

  27. Schimmels, J.M., Peshkin, M.A.: Admittance matrix design for force-guided assembly. IEEE Trans. Robot. Autom. 8(2), 213–227 (1992)

    Article  Google Scholar 

  28. Lozano-Perez, T., Mason, M.T., Taylor, R.H.: Automatic synthesis of fine-motion strategies for robots. Int. J. Robot. Res. 3(1), 3–24 (1984)

    Article  Google Scholar 

  29. Xia, Y., Yin, Y., Chen, Z.: Dynamic analysis for peg-in-hole assembly with contact deformation. Int. J. Adv. Manuf. Technol. 30, 118–128 (2006)

    Article  Google Scholar 

  30. Zhou, J., Georganas, N.D., Petriu, E.M., Shen, X., Marlic, F.: Modelling contact forces for 3d interactive peg-in-hole virtual reality operations. In: IEEE Instrumentation and Measurement (I2MTC 2008), British Columbia, Canada, May (2008)

  31. Leine, R.I., Glocker, C., van Campen, D.H.: Nonlinear dynamics of the woodpecker toy. In: Proceedings of ASME 2001 Design Engineering Technical Conference and Computers and Information in Engineering Conference, no. DETC2001/VIB-21608. Pittsburgh, PA: ASME, September (2001)

  32. Leine, R., van Campen, D.: Bifurcation phenomena in non-smooth dynamical systems. Eur. J. Mech. A/Solids 25, 595–616 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yoshikawa, T.: Passive and active closures by constraining mechanisms. J. Dyn. Syst. Meas. Control 121, 418–424 (1999)

    Article  Google Scholar 

  34. Shapiro, A., Rimon, E., Burdick, J.W.: Passive force closure and its computation in compliant-rigid grasps. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2, pp. 1769–1775. Maui, Hawaii, October (2001)

  35. Wang, M.Y., Liu, Y.H.: Force passivity in fixturing and grasping. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2236–2241. Taipei, Taiwan, September (2003)

  36. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  37. Montana, D.J.: The kinematics of contact and grasp. Int. J. Robot. Res. 7(3), 17–32 (1988)

    Article  Google Scholar 

  38. Balkcom, D., Trinkle, J.C.: Computing wrench cones for planar rigid body contact tasks. Int. J. Robot. Res. 21(12), 1053–1066 (2002)

    Article  Google Scholar 

  39. Sarkar, N., Kumar, V., Yun, X.: Velocity and acceleration analysis of contact between three-dimensional rigid bodies. ASME J. Appl. Mech. 63, 974–984 (1996)

    Article  Google Scholar 

  40. Trinkle, J.C., Tzitzouris, J.A., Pang, J.S.: Dynamic multi-rigid-body systems with concurrent distributed contacts. Philos. Trans. Math. Phys. Eng. Sci. Ser. A 359(1789), 2575–2593 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Montana, D.J.: The kinematics of multi-fingered manipulation. IEEE Trans. Robot. Autom. 11(4), 491–503 (1995)

    Article  Google Scholar 

  42. Nelson, D.D., Johnson, D.E., Cohen, E.: Haptic rendering of surface-to-surface sculpted model interaction. In: 8th Annual Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems. November (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Yu Wang.

Additional information

This research work was supported in part by the Research Grants Council of Hong Kong SAR (Project No. CUHK416206) and the Ministry of Science and Technology of China through the 973 Fund (No. 2007CB707703).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Wang, M.Y. & Low, K.H. Non-jamming conditions in multi-contact rigid-body dynamics. Multibody Syst Dyn 22, 269–295 (2009). https://doi.org/10.1007/s11044-009-9165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-009-9165-3

Keywords

Navigation