Skip to main content

Advertisement

Log in

Accelerated creep model based on the law of energy conservation and analysis of creep parameters

  • Research
  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This study presents a model to accurately describe the nonlinear deformation pattern of rock creep damage process by incorporating energy principles. The model captures the accelerated creep deformation pattern by considering the relationship between time and creep parameters at each stage of rock creep. A nonlinear creep model based on energy conservation is developed by integrating the time-dependent creep parameters into the model. The identified parameters of the model are compared to validate its feasibility and accuracy. The correlation coefficient between the fitted curve and the test curve exceeds 0.90, confirming the validity of the nonlinear creep energy damage model. Utilizing the energy conservation law, the model effectively characterizes the damage evolution throughout the whole creep process and accurately represents the nonlinear deformation behavior during the accelerated creep stage of rocks. Compared with the Nishihara model, the model presented in this study demonstrates a better fit with the test curve, serving as a novel approach for creep modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Dong, Z., Li, Y., Li, H., Shi, X., Ma, H., Zhao, K., et al. Zhao, A.: Influence of loading history on creep behavior of rock salt. J. Energy Storage 55, 105434 (2022)

    Article  Google Scholar 

  • Feng, Y.Y., Yang, X.J., Liu, J.G., Chen, Z.Q.: A new fractional Nishihara-type model with creep damage considering thermal effect. Eng. Fract. Mech. 242, 107451 (2021)

    Article  Google Scholar 

  • Gutiérrez-Ch, J.G., Senent, S., Graterol, E.P., Zeng, P., Jimenez, R.: Rock shear creep modeling: DEM–rate process theory approach. Int. J. Rock Mech. Min. Sci. 161, 105295 (2023)

    Article  Google Scholar 

  • Jiang, Z., Wang, H.: Study on shear creep characteristics and creep model of soil–rock mixture considering the influence of water content. Front. Phys. 10, 819709 (2022)

    Article  Google Scholar 

  • Jin, A., Wang, B., Zhao, Y., Wang, H., Feng, H., Sun, H., Yang, Z.: Analysis of the deformation and fracture of underground mine roadway by joint rock mass numerical model. Arab. J. Geosci. 12, 1–8 (2019)

    Article  Google Scholar 

  • Kou, H., He, C., Yang, W., Wu, F., Zhou, Z., Fu, J., Xiao, L.: A fractional nonlinear creep damage model for transversely isotropic rock. Rock Mech. Rock Eng. 56(2), 831–846 (2023)

    Article  Google Scholar 

  • Li, D., Liu, X., Li, C., Ding, T.: Modeling creep recovery behavior of rock materials based on Caputo variable-order fractional derivative. Mech. Time-Depend. Mater. 1–13 (2022)

  • Liu, H.Z., Xie, H.Q., He, J.D., Xiao, M.L., Zhuo, L.: Nonlinear creep damage constitutive model for soft rocks. Mech. Time-Depend. Mater. 21, 73–96 (2017)

    Article  Google Scholar 

  • Liu, W., Zhou, H., Zhang, S., Jiang, S., Yang, L.: A nonlinear creep model for surrounding rocks of tunnels based on kinetic energy theorem. J. Rock Mech. Geotech. Eng. 15(2), 363–374 (2023)

    Article  Google Scholar 

  • Ma, S., Gutierrez, M.: A time-dependent creep model for rock based on damage mechanics. Environ. Earth Sci. 79(19), 466 (2020)

    Article  Google Scholar 

  • Mei, J., Sheng, X., Yang, L., Zhang, Y., Yu, H., Zhang, W.: Time-dependent propagation and interaction behavior of adjacent cracks in rock-like material under hydro-mechanical coupling. Theor. Appl. Fract. Mech. 122, 103618 (2022)

    Article  Google Scholar 

  • Qiao, L., Wang, Z., Liu, J., Li, W.: Internal state variable creep constitutive model for the rock creep behavior. Bull. Eng. Geol. Environ. 81(11), 456 (2022)

    Article  Google Scholar 

  • Shen, M.R., Chen, H.J.: Testing study of long-term strength characteristics of red sandstone. Rock Soil Mech. 32(11), 3301–3305 (2011)

    MathSciNet  Google Scholar 

  • Tian, Y., Wu, F.Q., Tian, H.M., Li, Z., Shu, X.Y., He, L.K., et al. Chen, W.Z.: Anisotropic creep behavior of soft-hard interbedded rock masses based on 3D printing and digital imaging correlation technology. J. Mt. Sci. 20, 1147–1158 (2023)

    Article  Google Scholar 

  • Wang, J., Zhang, Q., Song, Z., Feng, S., Zhang, Y.: Nonlinear creep model of salt rock used for displacement prediction of salt cavern gas storage. J. Energy Storage 48, 103951 (2022)

    Article  Google Scholar 

  • Wu, F., Zhou, X., Ying, P., Li, C., Zhu, Z., Chen, J.: A study of uniaxial acoustic emission creep of salt rock based on improved fractional-order derivative. Rock Mech. Rock Eng. 55(3), 1619–1631 (2022)

    Article  Google Scholar 

  • Yan, B., Guo, Q., Ren, F., Cai, M.: Modified Nishihara model and experimental verification of deep rock mass under the water–rock interaction. Int. J. Rock Mech. Min. Sci. 128, 104250 (2020)

    Article  Google Scholar 

  • Yang, Z., Zhu, W., Guan, K., Yan, B., Jia, H.: Influence of dynamic disturbance on rock creep from time, space, and energy aspects. Geomat. Nat. Hazards Risk 13(1), 1065–1086 (2022)

    Article  Google Scholar 

  • Yu, H., Chen, W., Ma, Y., Tan, X., Yang, J.: Experimental and theoretical study on the creep behavior of a clayey rock. Rock Mech. Rock Eng. 56(2), 1387–1398 (2023)

    Article  Google Scholar 

  • Yu, S., Ren, X., Zhang, J., Sun, Z.: Numerical simulation of the excavation damage of Jinping deep tunnels based on the SPH method. Geomech. Geophys. Geo-Energy Geo-Resour. 9(1), 1 (2023a)

    Article  Google Scholar 

  • Yu, S., Sun, Z., Yu, J., Yang, J., Zhu, C.: An improved meshless method for modeling the mesoscale cracking processes of concrete containing random aggregates and initial defects. Constr. Build. Mater. 363, 129770 (2023b)

    Article  Google Scholar 

  • Zhang, Q.G., Liang, Y.C., Fan, X.Y., Li, G.Z., Li, W.T., Yang, B.Z., Tong, M.: A modified Nishihara model based on the law of the conservation of energy and experimental verification. J. Chongqing Univ. 39(3), 117–124 (2016). (in Chinese)

    Google Scholar 

  • Zhao, K., Yang, C., Ma, H., Daemen, J.J.K.: A creep-fatigue model of rock salt and its application to the deformation analysis of CAES salt caverns. Comput. Geotech. 156, 105311 (2023)

    Article  Google Scholar 

  • Zhou, X., Pan, X., Berto, F.: A state-of-the-art review on creep damage mechanics of rocks. Fatigue Fract. Eng. Mater. Struct. 45(3), 627–652 (2022)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 42067041) and the Guangxi Natural Science Foundation (Grant No. 2020GXNSFAA159125).

Author information

Authors and Affiliations

Authors

Contributions

Wenbo Liu: Conceptualization, data curation, writing-original draft, investigation, and methodology. Shuguang Zhang: Conceptualization, data curation, methodology, and investigation.

Corresponding author

Correspondence to Shuguang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, S. Accelerated creep model based on the law of energy conservation and analysis of creep parameters. Mech Time-Depend Mater 28, 227–254 (2024). https://doi.org/10.1007/s11043-023-09628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-023-09628-6

Keywords

Navigation