Skip to main content

Advertisement

Log in

Microscale mechanical properties dependent on the strain rate and temperature of cured isotropic conductive adhesive

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In this research, the microscale strain rate sensitivity and high-temperature mechanical properties of cured isotropic conductive adhesive (ICA) were investigated using microindentation. The indentation modulus and hardness of cured ICA with high silver content are relatively large. The slopes of contact stiffness–depth curve, modulus and hardness increase with increasing loading strain rate. The elastic modulus, hardness and creep behaviour at high temperature were characterised on the basis of the “rapid loading–holding–rapid unloading” loading mode and the semiempirical method from the generalised Kelvin model. With increasing temperature, the elastic modulus and hardness of cured ICA decrease from 3000–7000 and 100–300 MPa in the glassy state to 6–200 and 1–10 MPa, respectively, in the rubbery state. Creep compliance, which is relatively high in the rubbery state, increases with increasing holding time. On the retardation spectrum, the widened retardation peaks reflect different retardation processes with increasing retardation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abu Al-Rub, R.K., Faruk, A.N.M.: Prediction of micro and nano indentation size effects from spherical indenters. Mech. Adv. Mat. Struct. 19(1–3), 119–128 (2012)

    Article  Google Scholar 

  • Bhattacharyya, A.S., Mishra, S.K.: Micro/nanomechanical behavior of magnetron sputtered Si-C-N coatings through nanoindentation and scratch tests. J. Micromech. Microeng. 21(1), 015011 (2011)

    Article  Google Scholar 

  • Cheng, Y.T., Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91–149 (2004)

    Article  Google Scholar 

  • Chindam, C., Brown, N.R., Lakhtakia, A.: Temperature-dependent dynamic moduli of Parylene-C columnar microfibrous thin films. Polym. Test. 53, 89–97 (2016)

    Article  Google Scholar 

  • Feng, G., Ngan, A.H.W.: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17(3), 660–668 (2002)

    Article  Google Scholar 

  • Ferry, J.D.: Viscoelastic Properties of Polymer, 3rd edn. Wiley, New York (1980)

    Google Scholar 

  • Gao, L.L., Chen, X., Zhang, S.B., et al.: Mechanical properties of anisotropic conductive film with strain rate and temperature. Mater. Sci. Eng. A 513–514, 216–221 (2009)

    Article  Google Scholar 

  • Gao, L.L., Chen, X., Gao, H.: Mechanical properties of anisotropic conductive adhesive film under hygrothermal aging and thermal cycling. J. Electron. Mater. 41(7), 2001–2009 (2012)

    Article  Google Scholar 

  • Gao, H., Zhang, W.G., Zhang, Z.: Study on fatigue life and electrical property of COG assembly under thermal–electric–mechanical coupled loads. Microelectron. Reliab. 56, 148–154 (2016)

    Article  Google Scholar 

  • Ji, X.K., Xiao, G.S., Jin, T., et al.: Shear properties of isotropic conductive adhesive joints under different loading rates. J. Adhes. 95(3), 204–217 (2019)

    Article  Google Scholar 

  • Jong, W.R., Peng, S.H., Tsai, H.C.: Characteristics of a new-type anisotropic conductive film joints during the bonding process. Int. Commun. Heat Mass Transf. 37(5), 506–513 (2010)

    Article  Google Scholar 

  • Lang, U., Naujoks, N., Dual, J.: Mechanical characterization of PEDOT: PSS thin films. Synth. Met. 159, 473–479 (2009)

    Article  Google Scholar 

  • Lau, J., Wong, C.P., Lee, N.C., et al.: Electronics Manufacturing: With Lead–Free, Halogen–Free, and Conductive Adhesive Materials. McGraw Hill, New York (2002)

    Google Scholar 

  • Liu, J.: Conductive Adhesives for Electronics Packaging. Electrochemical Publications, London (1999)

    Google Scholar 

  • Lucas, B.N., Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30(3), 601–610 (1999)

    Article  Google Scholar 

  • Ma, H., Qiu, H., Shuhua Qi, S.H.: Electrically conductive adhesives based on acrylate resin filled with silver-plated graphite nanosheets and carbon nanotubes. J. Adhes. Sci. Technol. 29(20), 2233–2244 (2015)

    Article  Google Scholar 

  • Marques, V.M.F., Johnston, C., Grant, P.S.: Nanomechanical characterization of Sn–Ag–Cu/Cu joints—Part 1: Young’s modulus, hardness and deformation mechanisms as a function of temperature. Acta Mater. 61, 2460–2470 (2013)

    Article  Google Scholar 

  • Marques, E.A.S., Da Silva, L.F.M., Banea, M.D., et al.: Adhesive joints for low- and high-temperature use: an overview. J. Adhes. 91, 556–585 (2015)

    Article  Google Scholar 

  • Ngan, A.H.W., Tang, B.: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17(10), 2604–2610 (2002)

    Article  Google Scholar 

  • Oliver, W.C., Pethica, J.B.: U.S. Patent No. 4848141 (1989)

  • Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: advance in understanding and refinements to methodology. J. Mater. Res. 19(1), 3–20 (2004)

    Article  Google Scholar 

  • Pedrazzoli, D., Dorigato, A., Pegoretti, A.: Monitoring the mechanical behavior under ramp and creep conditions of electrically conductive polymer composites. Composites, Part A 43, 1285–1292 (2012)

    Article  Google Scholar 

  • Pethica, J.B., Oliver, W.C.: Tip surface interaction in STM and AFM. Phys. Scr. 19, 61–68 (1987)

    Article  Google Scholar 

  • Pharr, G.M., Oliver, W.C., Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7(3), 613–617 (1992)

    Article  Google Scholar 

  • Pizzi, A., Mittal, K.L.: Handbook of Adhesive Technology. Springer, Berlin (2018)

    Google Scholar 

  • Qiao, W.Y., Bao, H., Li, X.H., et al.: Research on electrical conductive adhesives filled with mixed filler. Int. J. Adhes. Adhes. 48, 159–163 (2014)

    Article  Google Scholar 

  • Shedbale, A.S., Singh, I.V., Mishra, B.K., et al.: Evaluation of mechanical properties using spherical ball indentation and coupled finite element-element-free Galerkin approach. Mech. Adv. Mat. Struct. 23(7), 832–843 (2016)

    Article  Google Scholar 

  • Staverman, A.J., Schwarzl, F.: The Physics of High Polymers. Springer, Berlin (1956)

    MATH  Google Scholar 

  • Xiao, G.S., Yang, X.X., Yuan, G.Z., et al.: Mechanical properties of intermetallic compounds at the Sn–3.0Ag–0.5Cu/Cu joint interface using nanoindentation. Mater. Des. 88, 520–527 (2015)

    Article  Google Scholar 

  • Xiao, G.S., Liu, E.Q., Jin, T., et al.: Mechanical properties of cured isotropic conductive adhesive (ICA) under hygrothermal aging investigated by indentation. Int. J. Solids Struct. 122–123, 81–90 (2017)

    Article  Google Scholar 

  • Yang, S., Zhang, Y.W., Zeng, K.Y.: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655–3666 (2004)

    Article  Google Scholar 

  • Yari, H., Mohseni, M., Ranjbar, Z., et al.: Novel toughened automotive clearcoats modified by a polyester-amide hyperbranched polymer: structural and mechanical aspects. Polym. Adv. Technol. 24(5), 495–502 (2013)

    Article  Google Scholar 

  • Zhou, Z.W., Ma, W., Zhang, S.J., et al.: Multiaxial creep of frozen loess. Mech. Mater. 95, 172–191 (2016)

    Article  Google Scholar 

  • Zhou, Z.W., Ma, W., Zhang, S.J., et al.: Effect of freeze-thaw cycles in mechanical behaviors of frozen loess. Cold Reg. Sci. Technol. 146, 9–18 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 11802198, 11772217, 11702182), the Shanxi Province Program for Science and Technology innovation in Colleges and universities (Grant No. 2019L0303) and Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 201801D221026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Shu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, G., Li, Z., Liu, E. et al. Microscale mechanical properties dependent on the strain rate and temperature of cured isotropic conductive adhesive. Mech Time-Depend Mater 25, 249–264 (2021). https://doi.org/10.1007/s11043-019-09438-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-019-09438-9

Keywords

Navigation