Skip to main content
Log in

Reverse roll-coating flow: a computational investigation towards high-speed defect free coating

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

A finite element Taylor–Galerkin pressure-correction algorithm is employed to simulate a high-speed defect-free roll-coating flow, which substantiates a coating process with a free meniscus surface. Findings are applicable across a wide range of coating sectors in optimisation of coating performance, which targets adaptive and intelligent process control. Industrially, there is a major drive towards using new material products and raising coating line-speeds, to address increased efficiency and productivity. This study has sought to attack these issues by developing an effective predictive toolset for high-speed defect-free coatings. Here, time-stepping/finite element methods are deployed to model this free-surface problem that involves the transfer of a coating fluid from a roller to a substrate (of prescribed wet-film thickness). This procedure is used in conjunction with a set of constitutive equations capable of describing the relevant fluid-film rheology in appropriate detail. Quantities of pressure, lift and drag have been calculated streamwise across the flow domain, and streamline patterns reveal a large recirculating vortex around the meniscus region. Such pressure distributions across the domain display a positive peak which decreases as nip-gap size increases. Further analysis has been conducted, mimicking the presence of a wetting line, whilst varying boundary conditions at the nip. Observation has shown that such inclusion would serve as a relief mechanism to the positive peak pressures generated around the nip zone. Here, through an elasto-hydrodynamic formulation, the elastic deformation of a rubber roll cover (elastomer) has also been introduced, which offers fresh insight into the process with respect to nip-flow behaviour, and allows for the analysis of both positive and negative nip-gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Equivalent dimensionally to 2×105 s−1.

  2. Possibly caused by fluctuating holding tension levels.

Abbreviations

Ca :

Capillary number

D :

Rate of deformation tensor

D roller :

Drag on the feed-roller

h F :

Film thickness

K :

Consistency index

L foil :

Lift on the foil-substrate

:

Characteristic length

m :

Power-law index

n :

Number of time steps

p :

Hydrodynamic pressure

Q :

Flow rate

Re :

Reynolds number

U F :

Foil speed

U R :

Roller speed

t :

Time

U :

Characteristic velocity

u :

Fluid velocity

Δt :

Time step

ρ :

Fluid density

μ :

Fluid viscosity

μ 0 :

Viscosity at zero shear rate

μ :

Viscosity at infinite shear rate

\(\dot{\gamma}\) :

Shear rate

β slip :

Slip coefficient

β curv. :

Free surface mean curvature

δ :

Slip length

References

  • Aboubacar, M., Webster, M.F.: A cell-vertex finite volume/element method on triangles for abrupt contraction viscoelastic flows. J. Non-Newton. Fluid Mech. 106(98), 83 (2001)

    Article  Google Scholar 

  • Ascanio, G., Ruiz, G.: Measurement of pressure distribution in a deformable nip of counter-rotating rolls. Meas. Sci. Technol. 17, 2430–2436 (2006)

    Article  Google Scholar 

  • Ascanio, G., Carreau, P.J., Brito-De La Fuente, E., Tanguy, P.A.: Forward deformable roll coating at high speed with Newtonian fluids. Chem. Eng. Res. Des. 82, 390–397 (2004)

    Article  Google Scholar 

  • Belblidia, F., Matallah, H., Puangkird, B., Webster, M.F.: Alternative subcell discretisations for viscoelastic flow: stress interpolation. J. Non-Newton. Fluid Mech. 146, 59–78 (2007)

    Article  MATH  Google Scholar 

  • Benkreira, H.: Experimental study of dynamic wetting in reverse-roll coating. AIChE J. 48, 221–226 (2002a)

    Article  Google Scholar 

  • Benkreira, H.: Dynamic wetting in metering and pre-metered forward roll coating. Chem. Eng. Sci. 57, 3025–3032 (2002b)

    Article  Google Scholar 

  • Benkreira, H., Ikin, J.B.: Dynamic wetting and gas viscosity effects. Chem. Eng. Sci. 65, 1790–1796 (2010)

    Article  Google Scholar 

  • Benkreira, H., Khan, M.I.: Air entrainment in dip coating under reduced air pressures. Chem. Eng. Sci. 63, 448–459 (2008)

    Article  Google Scholar 

  • Benkreira, H., Edwards, M.F., Wilkinson, W.L.: Mathematical modelling of the reverse and metering roll coating flow of Newtonian fluids. Chem. Eng. Sci. 37, 277–282 (1982)

    Article  Google Scholar 

  • Benkreira, H., Patel, R., Edwards, M.F.: Wilkinson WL. Classification and analyses of coating flows. J. Non-Newton. Fluid Mech. 54, 437–447 (1994)

    Article  Google Scholar 

  • Carvalho, M.S., Scriven, L.E.: Deformable roll coating flows: steady state and linear perturbation analysis. J. Fluid Mech. 339, 143–172 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Chandio, M.S., Webster, M.F.: Numerical simulation for reverse roller-coating with free-surfaces. In: ECCOMAS Proceedings, Computational Fluid Dynamics Conference, 4–7 Sept., Swansea, UK (2001)

    Google Scholar 

  • Chandio, M.S., Webster, M.F.: Numerical study of transient instabilities in reverse roller coating flows. Int. J. Numer. Methods Heat Fluid Flow 4, 375–403 (2002a)

    Article  Google Scholar 

  • Chandio, M.S., Webster, M.F.: Numerical simulation for viscous free-surface flows for reverse roller-coating. Int. J. Numer. Methods Heat Fluid Flow 4, 434–457 (2002b)

    Article  Google Scholar 

  • Cohu, O., Magnin, A.: Forward roll coating of Newtonian fluids with deformable rolls: an experimental investigation. AIChE J. 52, 1339–1347 (1997)

    Google Scholar 

  • Coyle, D.J., Macosko, C.W., Scriven, L.E.: The fluid dynamics of reverse roll coating. AIChE J. 36, 161–174 (1990a)

    Article  Google Scholar 

  • Coyle, D.J., Macosko, C.W., Scriven, L.E.: Reverse roll coating of non-Newtonian liquids. J. Rheol. 34, 615–636 (1990b)

    Article  Google Scholar 

  • Fernando, R.H., Glass, J.E.: Dynamic uniaxial extensional viscosity (DUEV) effects in roll application II. Polymer blend studies. J. Rheol. 32, 199–213 (1988)

    Article  Google Scholar 

  • Fourcade, E., Bertrand, F., Réglat, O., Tanguy, P.A.: Finite element analysis of fluid–solid interaction in the metering nip of a metering size press. Comput. Methods Appl. Mech. Eng. 174, 235–245 (1999)

    Article  MATH  Google Scholar 

  • Gaskell, P.H., Innes, G.E., Savage, M.D.: An experimental investigation of meniscus roll coating. J. Fluid Mech. 355, 17–44 (2000)

    Article  Google Scholar 

  • Gostling, M.J., Savage, M.D., Young, A.E., Gaskell, P.H.: A model for deformable roll coating with negative gaps and incompressible compliant layers. J. Fluid Mech. 489, 155–184 (2003)

    Article  MATH  Google Scholar 

  • Hao, Y., Haber, S.: Reverse roll coating flow. Int. J. Numer. Methods Fluids 30, 635–652 (1999)

    Article  MATH  Google Scholar 

  • Hawken, M., Tamaddon-Jahromi, H.R., Townsend, P., Webster, M.F.: Taylor–Galerkin based algorithm for viscous incompressible flow, D. Int. J. Numer. Methods Fluids 10, 327–351 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Mackerle, J.: Coatings and surface modification technologies: a finite element bibliography (1995–2005). Model. Simul. Mater. Sci. Eng. 13, 935–979 (2005)

    Article  Google Scholar 

  • Mmbaga, J.P., Hayes, R.E., Bertrand, F.H., Tanguy, P.A.: Flow simulation in the nip of a rigid forward roll coater. Int. J. Numer. Methods Fluids 48, 1041–1066 (2005)

    Article  MATH  Google Scholar 

  • Sizaire, R., Legat, V.: Finite element simulation of a filament stretching extensional rheometer. J. Non-Newton. Fluid Mech. 71, 89–107 (1997)

    Article  Google Scholar 

  • Wapperom, P., Webster, M.F.: Simulation for viscoelastic flow by a finite volume/element method. Comput. Methods Appl. Mech. Eng. 180, 281–304 (1999)

    Article  MATH  Google Scholar 

  • Webster, M.F., Tamaddon-Jahromi, H.R., Aboubacar, M.: Time-dependent algorithm for viscoelastic flow-finite element/volume schemes. Numer. Methods Partial Differ. Equ. 21, 272–296 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Zevallos, G.A., Carvalho, M.S., Pasquali, M.: Forward roll coating flows of viscoelastic liquids. J. Non-Newton. Fluid Mech. 130, 96–109 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support for the present work from EPSRC/CASE studentship and Tata-Steel UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Webster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belblidia, F., Tamaddon-Jahromi, H.R., Echendu, S.O.S. et al. Reverse roll-coating flow: a computational investigation towards high-speed defect free coating. Mech Time-Depend Mater 17, 557–579 (2013). https://doi.org/10.1007/s11043-012-9204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-012-9204-y

Keywords

Navigation