Skip to main content
Log in

Large strain rate-dependent response of elastomers at different strain rates: convolution integral vs. internal variable formulations

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Two different viscoelastic frameworks adapted to large strain rate-dependent response of elastomers are compared; for each approach, a simple model is derived. Within the Finite Linear Viscoelasticity theory, a time convolution integral model based on an extension to solid of the K-BKZ model is proposed. Considering the multiplicative split of the deformation gradient into elastic and inelastic parts, an internal variable model based on a large strain version of the Standard Linear Solid model is considered. In both cases, the strain energy functions involved are chosen neo-Hookean, and then each model possesses three material parameters: two stiffnesses and a viscosity parameter. These parameters are set to ensure the equivalence of the model responses for uniaxial large strain quasi-static and infinitely fast loading conditions, and for uniaxial rate-dependent small strain loading conditions. Considering their responses for different Eulerian strain rates, their differences are investigated with respect to the strain rate; more specifically, both stiffness and dissipative properties are studied. The comparison reveals that these two models differ significantly for intermediate strain rates, and a closing discussion highlights some issues about their foundations and numerical considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amin, A., Lion, A., Sekita, S., Okui, Y.: Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: experimental identification and numerical verification. Int. J. Plast. 22, 1610–1647 (2006)

    Article  MATH  Google Scholar 

  • Bernstein, B., Kearsley, E.A., Zapas, L.J.: A study of stress relaxation with finite strain. Trans. Soc. Rheol. 7, 391–410 (1963)

    Article  MATH  Google Scholar 

  • Bonet, J.: Large strain viscoelastic models. Int. J. Solids Struct. 38, 2953–2968 (2001)

    Article  MATH  Google Scholar 

  • Chang, W.V., Bloch, R., Tschoegl, N.W.: On the theory of the viscoelastic behavior of soft polymers in moderately large deformations. Rheol. Acta 15, 367–378 (1976)

    Article  MATH  Google Scholar 

  • Christensen, R.M.: A nonlinear theory of viscoelasticity for application to elastomers. J. Appl. Mech. 47, 762–768 (1980)

    Article  MATH  Google Scholar 

  • Christensen, R.M.: Theory of Viscoelasticity. An Introduction, 2nd edn. Academic Press, New York (1982)

    Google Scholar 

  • Ciambella, J., Paolone, A., Vidoli, S.: A comparison of nonlinear integral-based viscoelastic models through compression tests on filled rubber. Mech. Mater. 42, 932–944 (2010)

    Article  Google Scholar 

  • Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33(2), 239–249 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  • Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, W.W.: Viscoelastic behavior of elastomeric membranes. J. Appl. Mech. 59, S29–S34 (1992)

    Article  Google Scholar 

  • Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)

    Google Scholar 

  • Govindjee, S., Simo, J.C.: Coupled stress-diffusion: case II. J. Mech. Phys. Solids 41, 863–867 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Green, A.E., Rivlin, R.S.: The mechanics of non-linear materials with memory; Part I. Arch. Ration. Mech. Anal. 1, 1–21 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • Green, M.S., Tobolsky, A.V.: A new approach for the theory of relaxing polymeric media. J. Chem. Phys. 14, 87–112 (1946)

    Article  Google Scholar 

  • Haupt, P., Lion, A.: On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech. 159, 87–124 (2002)

    Article  MATH  Google Scholar 

  • Holzapfel, G.A.: On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Methods Appl. Mech. Eng. 39, 3903–3926 (1996)

    Article  MATH  Google Scholar 

  • Holzapfel, G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, Chichester (2000)

    MATH  Google Scholar 

  • Hoo Fatt, M.S., Bekar, I.: High-speed testing and material modeling of unfilled styrene butadiene vulcanizates at impact rates. J. Mater. Sci. 39(23), 6885–6899 (2004)

    Article  Google Scholar 

  • Huber, N., Tsakmakis, C.: Finite deformation viscoelasticity laws. Mech. Mater. 32, 1–18 (2000)

    Article  Google Scholar 

  • Kaye, A.: Non-Newtonian Flow in Incompressible Fluids. CoA Note 134. College of Aeronautics, Cranfield (1962)

    Google Scholar 

  • Knauss, W., Emri, I.: Non-linear viscoelasticity based on free volume considerations. Comput. Struct. 13, 123–128 (1981)

    Article  MATH  Google Scholar 

  • Lee, E.H.: Elastic–plastic deformation at finite strain. J. Appl. Mech. 35, 1–6 (1969)

    Article  Google Scholar 

  • Lion, A.: A physically based method to represent the thermo-mechanical behavior of elastomers. Acta Mech. 123, 1–25 (1997)

    Article  MATH  Google Scholar 

  • Lubliner, J.: A model of rubber viscoelasticity. Mech. Res. Commun. 12, 93–99 (1985)

    Article  Google Scholar 

  • Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79(5), 835–858 (2006)

    Article  Google Scholar 

  • Marckmann, G., Verron, E., Peseux, B.: Finite element analysis of blow-molding and thermoforming processes using a dynamic explicit procedure. Polym. Eng. Sci. 41(3), 426–439 (2001)

    Article  Google Scholar 

  • Morman, K.N. Jr.: An adaptation of finite linear viscoelasticity theory for rubber-like viscoelasticity by use of a generalized strain measure. Rheol. Acta 27, 3–14 (1988)

    Article  MATH  Google Scholar 

  • Niemczura, J., Ravi-Chandar, K.: On the response of rubbers at high strain rates—I. Simple waves. J. Mech. Phys. Solids 59(2), 423–441 (2011a)

    Article  MATH  Google Scholar 

  • Niemczura, J., Ravi-Chandar, K.: On the response of rubbers at high strain rates—II. Shock waves. J. Mech. Phys. Solids 59(2), 442–456 (2011b)

    Article  MATH  Google Scholar 

  • Niemczura, J., Ravi-Chandar, K.: On the response of rubbers at high strain rates—III. Effect of hysteresis. J. Mech. Phys. Solids 59(2), 457–472 (2011c)

    Article  MATH  Google Scholar 

  • Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35(26–27), 3455–3482 (1998)

    Article  MATH  Google Scholar 

  • Sarva, S., Deschanel, S., Boyce, M., Chen, W.: Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 48, 2208–2213 (2007)

    Article  Google Scholar 

  • Shrivastava, S., Tang, J.: Large deformation finite element analysis of non-linear viscoelastic membranes with reference to thermoforming. J. Strain Anal. 28(1), 31–51 (1993)

    Article  Google Scholar 

  • Sidoroff, F.: Un modèle viscoélastique non linéaire avec configuration intermédiaire. J. Méc. 13, 679–713 (1974)

    MathSciNet  Google Scholar 

  • Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  • Sullivan, J.L.: A nonlinear viscoelastic model for representing nonfactorizable time-dependent behavior of cured rubber. J. Rheol. 31(3), 271–295 (1987)

    Article  Google Scholar 

  • Tanner, R.I.: From A to (BK)Z in constitutive relations. J. Rheol. 32(7), 673–702 (1988)

    Article  Google Scholar 

  • Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  • Verron, E., Marckmann, G., Peseux, B.: Dynamic inflation of non-linear elastic and viscoelastic rubberlike membrane. Int. J. Numer. Methods Eng. 50(5), 1233–1251 (2001)

    Article  MATH  Google Scholar 

  • Wineman, A.S., Rajagopal, K.R.: Mechanical Response of Polymers. An Introduction. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Yi, J., Boyce, M., Lee, G., Balizer, E.: Large deformation rate-dependent stress–strain behavior of polyurea and polyurethanes. Polymer 47, 319–329 (2006)

    Article  Google Scholar 

  • Zapas, L.J., Craft, T.: Correlation of large longitudinal deformations with different strain histories. J. Res. Natl. Bur. Stand. 69A, 541–546 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Verron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petiteau, JC., Verron, E., Othman, R. et al. Large strain rate-dependent response of elastomers at different strain rates: convolution integral vs. internal variable formulations. Mech Time-Depend Mater 17, 349–367 (2013). https://doi.org/10.1007/s11043-012-9188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-012-9188-7

Keywords

Navigation