Skip to main content
Log in

A time-domain symplectic method for finite viscoelastic cylinders

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The symplectic method is introduced for boundary-condition problems of finite viscoelastic cylinders. On the basis of the state space formalism and the use of the Laplace integral transform, the general solution of the governing equations, zero- and nonzero-eigenvalue eigenvectors, are obtained. Since the eigenvectors are expressed in concise analytical forms, the adjoint symplectic relation of the Laplace domain is generalized to the time domain. Therefore, the particular solution and the eigenvector expansion method can be discussed directly in the eigenvector space of the time domain, without employing the iterative application of the inverse Laplace transformation. Using this method, various boundary conditions, the particular solution of nonhomogeneous equations, especially the interfacial continuity conditions of composite materials, can be conveniently described by combinations of the eigenvectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Babenkova, E., Kaplunov, J.: The two-term interior asymptotic expansion in the case of low-frequency longitudinal vibrations of an elongated elastic rectangle. In: Solid Mechanics and Its Applications, pp. 137–145. Kluwer Academic, Dordrecht (2004a)

    Google Scholar 

  • Babenkova, E., Kaplunov, J.: Low-frequency decay conditions for a semi-infinite elastic strip. Proc. R. Soc. Lond. 460, 2153–2169 (2004b)

    Article  MathSciNet  MATH  Google Scholar 

  • Bottoni, M., Mazzotti, C., Savoia, M.: A finite element model for linear viscoelastic behaviour of pultruded thin-walled beams under general loadings. Int. J. Solids Struct. 45, 770–793 (2008)

    Article  MATH  Google Scholar 

  • Bustamante, R., Dorfmann, A., Ogden, R.W.: On electric body forces and Maxwell stresses in nonlinearly electroelastic solids. Int. J. Eng. Sci. 47, 1131–1141 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Chirita, S., Romania, I.: Saint-Venant problem and semi-inverse solutions in linear viscoelasticity. Acta Mech. 94, 221–232 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Drozdov, A.D.: Effect of temperature on the viscoelastic and viscoplastic behavior of polypropylene. Mech. Mater. 14, 411–434 (2010)

    Google Scholar 

  • Gregory, R.D., Wan, Y.M.: Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. J. Elast. 14, 27–64 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • He, X.Q., Wang, J.S., Qin, Q.H.: Saint-Venant decay analysis of FGPM laminates and dissimilar piezoelectric laminates. Mech. Mater. 39, 1053–1065 (2007)

    Article  Google Scholar 

  • Huang, Y., Mogilevskaya, S.G., Crouch, S.L.: Complex variable boundary integral method for linear viscoelasticity: Part I—Basic formulation. Eng. Anal. Bound. Elem. 30, 1049–1056 (2006)

    Article  MATH  Google Scholar 

  • Kroon, M.: A constitutive framework for modelling thin incompressible viscoelastic materials under plane stress in the finite strain regime. Mech. Time-Depend. Mater. 15, 389–406 (2011)

    Article  Google Scholar 

  • Leung, A.Y.T., Zhu, B., Zheng, J., Yang, H.: Two-dimensional viscoelastic vibration by analytic Fourier p-elements. Thin-Walled Struct. 41, 1159–1170 (2003)

    Article  Google Scholar 

  • Lim, C.W., Cui, S., Yao, W.A.: On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported. Int. J. Solids Struct. 44, 5396–5411 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Mesquita, A.D., Coda, H.B.: A boundary element methodology for viscoelastic analysis: part I with cells. Appl. Math. Model. 31, 1149–1170 (2007)

    Article  MATH  Google Scholar 

  • Seoudi, B.M., Kulik, V.M., Boiko, A.V., Chun, H.H., Lee, I.: New approach to the computation of the form factor of viscoelastic cylinders. Mech. Mater. 41, 495–505 (2009)

    Article  Google Scholar 

  • Stephen, N.G., Wang, M.Z.: Decay rates for the hollow circular cylinder. J. Appl. Mech. 59, 747–753 (1992)

    Article  MATH  Google Scholar 

  • Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  • Wang, J., Birgisson, B.: A time domain boundary element method for modeling the quasi-static viscoelastic behavior of asphalt pavements. Eng. Anal. Bound. Elem. 31, 226–240 (2007)

    Article  MATH  Google Scholar 

  • Xu, X.S., Zhong, W.X., Zhang, H.W.: The Saint-Venant problem and principle in elasticity. Int. J. Solids Struct. 34, 2815–2827 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, X.Z., Hou, J.P.: A stress relaxation model for the viscoelastic solids based on the steady-state creep equation. Mech. Time-Depend. Mater. 15, 29–39 (2011)

    Article  Google Scholar 

  • Yao, W.A., Su, B., Zhong, W.X.: Hamiltonian system for orthotropic plate bending based on analogy theory. Sci. China Ser. E 44, 258–264 (2001)

    Article  Google Scholar 

  • Zhang, W.X., Cui, W.H., Xiao, Z.R., Xu, X.S.: The quasi-static analysis for the viscoelastic hollow circular cylinder using the symplectic system method. Int. J. Eng. Sci. 48, 727–741 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, W.X., Xu, X.S.: The symplectic approach for two-dimensional thermo-viscoelastic analysis. Int. J. Eng. Sci. 50, 56–69 (2012)

    Article  Google Scholar 

  • Zhao, L., Chen, W.Q.: Symplectic analysis of plane problems of functionally graded piezoelectric materials. Mech. Mater. 41, 1330–1339 (2009)

    Article  Google Scholar 

  • Zhong, W.X.: Duality System in Applied Mechanics and Optimal Control. Kluwer Academic, Dordrecht (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixiang Zhang.

Appendix

Appendix

The components in Eq. (32) are

$$ \everymath{\displaystyle }\begin{array}{rcl} \bar{u}_{r}^{\prime \prime} &=& J_{n + 1}c_{2} + J_{n - 1}c_{3} - \frac{1}{4 - 4v} \frac{d}{dr}( J_{n}c_{1} + rJ_{n + 1}c_{2} + rJ_{n - 1}c_{3} ) \\ \noalign {\vspace {4pt}} &&{}+ Y_{n + 1}c_{5} + Y_{n - 1}c_{6} - \frac{1}{4 - 4v}\frac{d}{dr}( Y_{n}c_{4} + rY_{n + 1}c_{5} + rY_{n - 1}c_{6} ) \\ \noalign {\vspace {4pt}} \bar{u}_{\theta}^{\prime \prime} &=& \frac{1}{4 - 4v} \biggl[ - \frac{n}{r}J_{n}c_{1} - (4 - 4v + n) J_{n + 1}c_{2}+ (4 - 4v - n)J_{n - 1}c_{3} \biggr] \\ \noalign {\vspace {4pt}} &&{}+ \frac{1}{4 - 4v}\biggl[ -\frac{n}{r}Y_{n}c_{4} - (4 - 4v +n)Y_{n + 1}c_{5} + (4 - 4v - n)Y_{n - 1}c_{6} \biggr] \\ \noalign {\vspace {4pt}} \bar{u}_{z}^{\prime \prime} &=& - \frac{\kappa}{4 - 4v}( J_{n}c_{1} + rJ_{n + 1}c_{2} + rJ_{n - 1}c_{3} ) - \frac{\kappa}{4 - 4v}( Y_{n}c_{4} + rY_{n + 1}c_{5} + rY_{n - 1}c_{6} ) \\ \noalign {\vspace {4pt}} r\bar{\tau}_{rz}^{\prime \prime} &=& \frac{\bar{\mu} \kappa}{2 - 2v} \bigl\{ (\kappa rJ_{n - 1} - nJ_{n})c_{1} + \bigl[ \kappa r^{2}J_{n} - (n + 2 - 2v)rJ_{n + 1} \bigr]c_{2} \\ \noalign {\vspace {4pt}} && {}+ \bigl[ (n - 2 + 2v)rJ_{n - 1} -\kappa r^{2}J_{n} \bigr]c_{3} \bigr\} +\frac{\bar{\mu} \kappa}{2 - 2v}\bigl\{ (\kappa rY_{n - 1} - nY_{n})c_{4} \\ \noalign {\vspace {4pt}} &&{}+ \bigl[ \kappa r^{2}Y_{n} - (n + 2 - 2v)rY_{n + 1} \bigr]c_{5} + \bigl[ (n - 2 + 2v)rY_{n - 1} - \kappa r^{2}Y_{n}\bigr]c_{6} \bigr\} \\ \noalign {\vspace {4pt}} r\bar{\tau}_{\theta z}^{\prime \prime} &=& \frac{\bar{\mu} \kappa}{2 - 2v} \bigl[ nJ_{n}c_{1} + (n + 2 - 2v)rJ_{n + 1}c_{2} + (n - 2 +2v)rJ_{n - 1}c_{3} \bigr] \\ \noalign {\vspace {4pt}} &&{}+ \frac{\bar{\mu} \kappa}{2 - 2v} \bigl[ nY_{n}c_{4}+ (n + 2 - 2v)rY_{n + 1}c_{5} + (n - 2 + 2v)rY_{n - 1}c_{6} \bigr] \\ \noalign {\vspace {4pt}} r\bar{\sigma}_{z}^{\prime \prime} &=& \frac{\bar{\mu} \kappa}{2 - 2v} \bigl[ -\kappa rJ_{n}c_{1} + \bigl( 2vrJ_{n}- \kappa r^{2}J_{n + 1} \bigr)c_{2} - \bigl(2vrJ_{n} + \kappa r^{2}J_{n - 1} \bigr)c_{3} \bigr] \\ \noalign {\vspace {4pt}} &&{}+ \frac{\bar{\mu} \kappa}{2 - 2v} \bigl[ - \kappa rY_{n}c_{4} + \bigl( 2vrY_{n} - \kappa r^{2}Y_{n + 1}\bigr)c_{5} - \bigl( 2vrY_{n} + \kappa r^{2}Y_{n - 1} \bigr)c_{6} \bigr] \\ \end{array} $$
(67)

where c j (n=1,2,…,6) are integral constants, and J n =J n (κr) and Y n =Y n (κr) are the Bessel functions and Neumann functions, respectively.

The coefficients in Eq. (63) are c 11=J 1(κr m), c 12=0, c 13=Y 1(κr m), c 14=c 15=c 16=0, c 21=κJ 0(κr m)+(2v−1)J 1(κr m)/r m, \(c_{22} = 4(1 -v)^{2}J_{0} (\kappa r_{\mathrm{m}}) + (4 - 4v)\*(2v -1)J_{1}(\kappa r_{\mathrm{m}}) / (\kappa r_{\mathrm{m}}) -v[J_{0}(\kappa r_{\mathrm{m}}) - \kappa r_{\mathrm{m}}J_{1}(\kappa r_{\mathrm{m}})]\), c 23=κY 0(κr m)+(2v−1)Y 1(κr m)/r m, \(c_{24} =4(1 - v)^{2}Y_{0}(\kappa r_{\mathrm{m}}) + (4 - 4v\mathrm{)(}2v - 1)Y_{1}(\kappa r_{\mathrm{m}})/(\kappa r_{\mathrm{m}}) - v[Y_{0}(\kappa r_{\mathrm{m}}) - \kappa rY_{1}(\kappa r_{\mathrm{m}})]\), c 25=c 26=0, c 31=J 1(κr f), c 32=(4−4v)J 1(κr f)−r f J 0(κr f), c 33=Y 1(κr f), c 34=(4−4v)Y 1(κr f)−r f Y 0(κr f), c 35=−c 31, c 36=−c 32, c 41=J 0(κr f), c 42=r f J 1(κr f), c 43=Y 0(κr f), c 44=r f Y 1(κr f), c 45=−c 41, c 46=−c 42, c 51=J 1(κr f), c 52=0, c 53=Y 1(κr f), c 54=0, c 55=−c 51, c 56=0, c 61=κJ 0(κr f)+(2v−1)J 1(κr f)/r f, c 62=4(1−v)2 J 0(κr f)+(4−4v)(2v−1)J 1(κr f)/(κr f)−v[J 0(κr f)−κrJ 1(κr f)], c 63=κY 0(κr f)+(2v−1)Y 1(κr f)/r f, c 64=4(1−v)2 Y 0(κr f)+(4−4v)(2v−1)Y 1(κr f)/(κr f)−v[Y 0(κr f)−κrY 1(κr f)], c 65=−c 61, c 66=−c 62.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Wang, H. & Yuan, F. A time-domain symplectic method for finite viscoelastic cylinders. Mech Time-Depend Mater 17, 243–260 (2013). https://doi.org/10.1007/s11043-012-9183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-012-9183-z

Keywords

Navigation