Skip to main content
Log in

TinyML: Tools, applications, challenges, and future research directions

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In recent years, Artificial Intelligence (AI) and Machine learning (ML) have gained significant interest from both, industry and academia. Notably, conventional ML techniques require enormous amounts of power to meet the desired accuracy, which has limited their use mainly to high-capability devices such as network nodes. However, with many advancements in technologies such as the Internet of Things (IoT) and edge computing, it is desirable to incorporate ML techniques into resource-constrained embedded devices for distributed and ubiquitous intelligence. This has motivated the emergence of the TinyML paradigm which is an embedded ML technique that enables ML applications on multiple cheap, resource- and power-constrained devices. However, during this transition towards appropriate implementation of the TinyML technology, multiple challenges such as processing capacity optimisation, improved reliability, and maintenance of learning models’ accuracy require timely solutions. In this article, various avenues available for TinyML implementation are reviewed. Firstly, a background of TinyML is provided, followed by detailed discussions on various tools supporting TinyML. Then, state-of-art applications of TinyML using advanced technologies are detailed. Lastly, detailed prospects are presented which include various research challenges and identification of future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no data-sets were generated or analysed during the current study

References

  1. Goudarzi M, Palaniswami MS, Buyya R (2021) A distributed deep reinforcement learning technique for application placement in edge and fog computing environments, IEEE Trans Mob Comput, p 1-1

  2. Muhammad G, Hossain MS (2021) Emotion recognition for cognitive edge computing using deep learning. IEEE Internet Things J, 8(23):16894–16901

  3. Li W, Deng W, She R, Zhang N, Wang Y, Ma W (2021) Edge computing offloading strategy based on particle swarm algorithm for power internet of things, In IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), p 145–150

  4. Liu J, Liu C, Wang B, Gao G, Wang S (2022) Optimized task allocation for iot application in mobile-edge computing. IEEE Internet Things J, 9(13):10370–10381

    Article  Google Scholar 

  5. Muniswamaiah M, Agerwala T, Tappert CC (2021) A survey on cloudlets, mobile edge, and fog computing, In 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), p 139–142

  6. Ying J, Hsieh J, Hou D, Hou J, Liu T, Zhang X, Wang Y, Pan Y-T (2021) Edge-enabled cloud computing management platform for smart manufacturing, In IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0 &IoT), p 682–686

  7. Wu D, Huang X, Xie X, Nie X, Bao L, Qin Z (2021) Ledge: Leveraging edge computing for resilient access management of mobile iot. IEEE Trans Mob Comput, 20(3):1110–1125

    Article  Google Scholar 

  8. Bao W, Wu C, Guleng S, Zhang J, Yau K-LA, Ji Y (2021) Edge computing-based joint client selection and networking scheme for federated learning in vehicular iot. China Commun, 18(6):39–52

    Article  Google Scholar 

  9. Singh J, Bello Y, Hussein AR, Erbad A, Mohamed A (2021) Hierarchical security paradigm for IoT multiaccess edge computing. IEEE Internet Things J, 8(7):5794–5805

    Article  Google Scholar 

  10. Ding C, Zhou A, Ma X, Zhang N, Hsu C-H, Wang S (2021) Towards diversified iot services in mobile edge computing, IEEE Transactions on Cloud Computing, p 1-1

  11. Mahmood N, López O, Park O, Moerman I, Mikhaylov K, Mercier E, Munari A, Clazzer F, Böcker S, Bartz H (Eds.) (2020) White paper on critical and massive machine type communication towards 6G [white paper], 6G Research Visions, vol. 11 [Online]. Available: http://urn.fi/urn:isbn:9789526226781

  12. Ray PP (2022)A review on TinyML: State-of-the-art and prospects, Journal of King Saud University - Computer and Information Sciences, 34(4):1595-1623, [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1319157821003335

  13. Guleria C, Das K, Sahu A (2021) A survey on mobile edge computing: Efficient energy management system, In Innovations in Energy Management and Renewable Resources(52042). IEEE, p 1–4

  14. Ogino T (2021) Simplified multi-objective optimization for flexible IoT edge computing, In 4th International Conference on Information and Computer Technologies (ICICT). IEEE, p 168–173

  15. Ren W, Sun Y, Luo H, Guizani M (2022) A demand-driven incremental deployment strategy for edge computing in IoT network. IEEE Transactions on Network Science and Engineering 9(2):416–430

    Article  MathSciNet  Google Scholar 

  16. Johnny F, Knutsson Arm F (2021) CMSIS-NN & Optimizations for Edge AI,

  17. Home | tinyml foundation.” [Online]. Available: https://www.tinyml.org/

  18. Warden P, Situnayake D, TinyML: machine learning with TensorFlow Lite on Arduino and ultra-low-power microcontrollers. O’Reilly, [Online]. Available: https://books.google.com/books/about/TinyML.html?id=sB3mxQEACAAJ

  19. Alajlan NN, Ibrahim DM (2022) TinyML: enabling of inference deep learning models on ultra-low-power IoT edge devices for AI applications,” Micromachines, 13(6):851, [Online]. Available: https://www.mdpi.com/2072-666X/13/6/851

  20. Carrera-Rivera A, Ochoa W, Larrinaga F, Lasa G (2022) How-to conduct a systematic literature review: A quick guide for computer science research, MethodsX, 9:101895, . [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2215016122002746

  21. Kitchenham BA, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering, Keele University and Durham University Joint Report, Tech. Rep. EBSE 2007-001, 07. Available: https://www.elsevier.com/_data/promis_misc/525444systematicreviewsguide.pdf

  22. Staples Mm, Niazi, “Experiences using systematic review guidelines, J Syst Softw, , 9:1425-1437, sep 2007. [Online]. Available: https://doi.org/10.1016/j.jss.2006.09.046

  23. Petticrew M, Roberts H (2006) Systematic Reviews in the Social Sciences. Oxford, UK: Blackwell Publishing Ltd, Jan . [Online]. Available: http://doi.wiley.com/10.1002/9780470754887

  24. Krippendorff K (2018) Content analysis: An introduction to its methodology. Sage publications

  25. Dutta DL, Bharali S (2021) TinyML Meets IoT: A comprehensive survey, Internet of Thing, 16:100461. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2542660521001025

  26. Shafique M, Theocharides T, Reddy VJ, Murmann B (2021) TinyML: current progress, research challenges, and future roadmap, In 58th ACM/IEEE Design Automation Conference (DAC), p. 1303–1306

  27. Immonen R, Hämäläinen T (2022) Tiny machine learning for resource-constrained microcontrollers, J Sens, (2022)1–11. [Online]. Available: https://www.hindawi.com/journals/js/2022/7437023/

  28. Han H, Siebert J (2022) TinyML: A systematic review and synthesis of existing research, In International Conference on Artificial Intelligence in Information and Communication (ICAIIC), p 269–274

  29. Tsoukas V, Boumpa E, Giannakas G, Kakarountas A (2022) A review of machine learning and tinyml in healthcare, In 25th Pan-Hellenic Conference on Informatics, ser. PCI 2021. New York, NY, USA: Association for Computing Machinery, p 69–73. [Online]. Available: https://doi.org/10.1145/3503823.3503836

  30. Banbury CR, Reddi VJ, Lam M, Fu W, Fazel A, Holleman J, Huang X, Hurtado R, Kanter D, Lokhmotov A, Patterson D, Pau D, Seo J-s, Sieracki J, Thakker U, Verhelst M, Yadav P (2020) Benchmarking TinyML systems: Challenges and direction, [Online]. Available: https://arxiv.org/abs/2003.04821

  31. Rajapakse V, Karunanayake I, Ahmed N (2023) Intelligence at the extreme edge: A survey on reformable tinyml, ACM Comput Surv, Just Accepted. [Online]. Available: https://doi.org/10.1145/3583683

  32. TinyML as a service and machine learning at the edge - Ericsson. [Online]. Available: https://www.ericsson.com/en/blog/2019/12/tinyml-as-a-service

  33. Gousev E (2020) Recent progress on tinyml technologies and opportunities. [Online]. Available: https://sites.google.com/g.harvard.edu/tinyml/lectures?authuser=0#h.839rbio9569w

  34. Jain P (2020) Edgeml: Algorithms for tinyml. [Online]. Available: https://sites.google.com/g.harvard.edu/tinyml/lectures?authuser=0#h.5hc2tcel4ikp

  35. Turnquist B, Dockter Boon Logic R (2020) Amber: A complete, ML-based, anomaly detection pipeline for microcontrollers

  36. Xu Eta Compute C (2020) Enabling neural network at the low power edge: A neural network compiler for hardware constrained embedded system

  37. Krstulovic S (2020) Data collection design for real world tinyml. [Online]. Available: https://sites.google.com/g.harvard.edu/tinyml/lectures?authuser=0#h.5aj7gww1ta6s

  38. Eroma A (2020) Unsupervised collaborative learning technology at the edge for industrial machine learning, [Online]. Available: https://cms.tinyml.org/wp-content/uploads/talks2020/tinyML_Talks_Alexander_Eroma_200428.pdf

  39. Sanchez-Iborra R, Skarmeta AF (2020) TinyML-enabled frugal smart objects: Challenges and opportunities. IEEE Circ Syst Mag, 20(3):4–18

    Article  Google Scholar 

  40. Tabanelli E, Tagliavini G, Benini L (2022) DNN is not all you need: Parallelizing non-neural ML algorithms on ultra-low-power IoT processors

  41. Wang X, Magno M, Cavigelli L, Benini L (2020) FANN-on-MCU: An open-source toolkit for energy-efficient neural network inference at the edge of the Internet of Things. IEEE Internet Things J 7(5):4403–4417

    Article  Google Scholar 

  42. Fahim F, Hawks B, Herwig C, Hirschauer J, Jindariani S, Tran N, Carloni LP, Guglielmo GD, Harris P, Krupa J, Rankin D, Valentin MB, Hester J, Luo Y, Mamish J, Orgrenci-Memik S, Aarrestad T, Javed H, Loncar V, Pierini M, Pol AA, Summers S, Duarte J, Hauck S, Hsu S-C, Ngadiuba J, Liu M, Hoang D, Kreinar E, Wu Z (2021) hls4ml: An open-source codesign workflow to empower scientific low-power machine learning devices

  43. Paissan F, Ancilotto A, Farella E (2022) PhiNets: A scalable backbone for low-power AI at the edge, ACM Trans Embed Comput Syst, 21(5), [Online]. Available: https://doi.org/10.1145/3510832

  44. Bringmann O, Ecker W, Feldner I, Frischknecht A, Gerum C, Hämäläinen T, Hanif MA, Klaiber MJ, Mueller-Gritschneder D, Bernardo PP, Prebeck S, Shafique M (2021) Automated HW/SW co-design for edge AI: State, challenges and steps ahead, In Proceedings of the 2021 International Conference on Hardware/Software Codesign and System Synthesis, ser. CODES/ISSS ’21. New York, NY, USA: Association for Computing Machinery, p 11–20. [Online]. Available: https://doi.org/10.1145/3478684.3479261

  45. TensorFlow Lite inference. [Online]. Available: https://www.tensorflow.org/lite/guide/inference

  46. Adi SE, Casson AJ (2021) Design and optimization of a tensorflow lite deep learning neural network for human activity recognition on a smartphone, In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp 7028–7031

  47. Coreml. [Online]. Available: https://docs.developer.apple.com/documentation/coreml

  48. Avola D, Cinque L, Fagioli A, Foresti GL, Marini MR, Mecca A, Pannone D (2022) Medicinal Boxes Recognition on a Deep Transfer Learning Augmented Reality Mobile Application. Cham: Springer International Publishing, 13231:489–499. [Online]. Available: https://link.springer.com/10.1007/978-3-031-06427-2_41

  49. microtensor. [Online]. Available: https://utensor.github.io/website/

  50. Edge impulse. [Online]. Available: https://www.edgeimpulse.com/

  51. Home - NanoEdgeTM AI Studio. [Online]. Available: https://cartesiam.ai/

  52. Home | PyTorch. [Online]. Available: https://pytorch.org/mobile/home/

  53. Dai X, Spasić I, Chapman S, Meyer B (2020) The state of the art in implementing machine learning for mobile apps: A survey, In 2020 SoutheastCon, pp 1–8

  54. The embedded learning library - Embedded Learning Library (ELL). [Online]. Available: https://microsoft.github.io/ELL/

  55. Introduction to STM32Cube.AI - STMicroelectronics. [Online]. Available: https://www.st.com/content/st_com/en/support/learning/stm32-education/stm32-moocs/Introduction_to_STM32CubeAI_MOOC.html

  56. Sun D, Vlasic D, Herrmann C, Jampani V, Krainin M, Chang H, Zabih R, Freeman WT, Liu C (2021) Autoflow: Learning a better training set for optical flow, In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 10,088–10,097

  57. tinyML Talks: AutoFlow - an open source Framework to automatically implement neural networks on embedded devices | tinyML Foundation. [Online]. Available: https://cms.tinyml.org/wp-content/uploads/talks2022/tinyML_Talks_Daniel_Konegen_and_Marcus_Rub_220405.pdf

  58. AutoFlow: learning a better training set for optical flow. [Online]. Available: https://autoflow-google.github.io/

  59. Apache MXNet | A flexible and efficient library for deep learning. [Online]. Available: https://mxnet.apache.org/versions/1.9.1/

  60. ML kit for firebase | firebase documentation. [Online]. Available: https://firebase.google.com/docs/ml-kit

  61. Mooney P (2022) kaggle machine learning & data science survey, [Online]. Available: https://kaggle.com/competitions/kaggle-survey-2022

  62. Banbury CR, Reddi VJ, Lam M, Fu W, Fazel A, Holleman J, Huang X, Hurtado R, Kanter D, Lokhmotov A, Patterson D, Pau D, sun Seo J, Sieracki J, Thakker U, Verhelst M, Yadav P (2021) Benchmarking tinyml systems: Challenges and direction,

  63. López OA, Rosabal OM, Ruiz-Guirola D, Raghuwanshi P, Mikhaylov K, Lovén L, Iyer S (2023) Energy-sustainable iot connectivity: Vision, technological enablers, challenges, and future directions

  64. Delnevo G, Prandi C, Mirri S, Manzoni P (2021) Evaluating the practical limitations of tinyml: an experimental approach, In IEEE Globecom Workshops (GC Wkshps), p 1–6

  65. Taheri Tajar A, Ramazani A, Mansoorizadeh M (2021) A lightweight tiny-yolov3 vehicle detection approach, Journal of Real-Time Image Processing, 18(6):2389–2401. [Online]. Available: https://link.springer.com/10.1007/s11554-021-01131-w

  66. De Leon JD, Atienza R (2022) Depth pruning with auxiliary networks for tinyml, In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p 3963–3967

  67. Liberis E, Lane ND (2023) Differentiable neural network pruning to enable smart applications on microcontrollers, Proc ACM Interact Mob Wearable Ubiquitous Technol, 6(4) [Online]. Available: https://doi.org/10.1145/3569468

  68. Yeom S-K, Shim K-H, Hwang J-H (2022) Toward compact deep neural networks via energy-aware pruning

  69. Vysogorets A, Kempe J (2021) Connectivity matters: Neural network pruning through the lens of effective sparsity, J Mach Learn Res, 24:99:1–99:23

  70. Khajooei A, Jamshidi MB, Shokouhi SB (2023) A super-efficient tinyml processor for the edge metaverse, Information, 14(4):235. [Online]. Available: https://doi.org/10.3390/info14040235

  71. Sudharsan B, Salerno S, Nguyen D-D, Yahya M, Wahid A, Yadav P, Breslin JG, Ali MI (2021) Tinyml benchmark: Executing fully connected neural networks on commodity microcontrollers, In IEEE 7th World Forum on Internet of Things (WF-IoT), pp 883–884

  72. Mlcommons, Mar 2023. [Online]. Available: https://mlcommons.org/

  73. Iyer S, Khanai R, Torse D, Pandya RJ, Rabie KM, Pai K, Khan WU, Fadlullah Z (2023) A survey on semantic communications for intelligent wireless networks, Wirel Pers Commun, 129(1):569–611 Mar 2023. [Online]. Available: https://link.springer.com/10.1007/s11277-022-10111-7

  74. Fedorov I, Stamenovic M, Jensen C, Yang L-C, Mandell A, Gan Y, Mattina M, Whatmough PN (2020) Tinylstms: Efficient neural speech enhancement for hearing aids, In Interspeech 2020. ISCA: ISCA, Oct 2020, p 4054–4058. [Online]. Available: arXiv:2005.11138

  75. Kwon J, Park D (2021) Hardware/software co-design for tinyml voice-recognition application on resource frugal edge devices, Appl Sci, 11(22):11073 Nov 2021. [Online]. Available: https://www.mdpi.com/2076-3417/11/22/11073

  76. Zhang Y, Sun S, Ma L (2021) Tiny transducer: A highly-efficient speech recognition model on edge devices, Jan 2021. [Online]. Available: arXiv:2101.06856

  77. Li J, Alvarez R (2021) On the quantization of recurrent neural networks, Jan 2021. [Online]. Available: arXiv:2101.05453

  78. Zhang Y, Sun S, Ma L (2021) Tiny transducer: A highly-efficient speech recognition model on edge devices, In ICASSP IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 6024–6028

  79. Fedorov I, Stamenovic M, Jensen C, Yang L-C, Mandell A, Gan Y, Mattina M, Whatmough PN (2020) TinyLSTMs: efficient neural speech enhancement for hearing aids, arXiv:2005.11138

  80. Vincent E, Barker J, Watanabe S, Le Roux J, Nesta F, Matassoni M (2013) The second ‘chime’ speech separation and recognition challenge: Datasets, tasks and baselines, In IEEE International Conference on Acoustics, Speech and Signal Processing, pp 126–130

  81. Paul AJ, Mohan P, Sehgal S (2020) Rethinking generalization in american sign language prediction for edge devices with extremely low memory footprint, In IEEE Recent Advances in Intelligent Computational Systems (RAICS). IEEE, Dec 2020, p 147–152. [Online]. Available: https://ieeexplore.ieee.org/document/9332480/

  82. Mohan P, Paul AJ, Chirania A (2021) A Tiny CNN Architecture for Medical Face Mask Detection for Resource-Constrained Endpoints. Springer, p 657–670. [Online]. Available: https://link.springer.com/10.1007/978-981-16-0749-3_52

  83. Patil SG, Dennis DK, Pabbaraju C, Shaheer N, Simhadri HV, Seshadri V, Varma M, Jain P (2019) Gesturepod, In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. New York, NY, USA: ACM, Oct 2019, p 403–415

  84. de Prado M, Rusci M, Capotondi A, Donze R, Benini L, Pazos N (2021) Robustifying the deployment of tinyml models for autonomous mini-vehicles, Sensors, 21(4):1339 Feb 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/4/1339

  85. Benmeziane H, Maghraoui KE, Ouarnoughi H, Niar S, Wistuba M, Wang N (2021) A comprehensive survey on hardware-aware neural architecture search, Jan 2021. [Online]. Available: arXiv:2101.09336

  86. Ren H, Anicic D, Runkler T (2021) TinyOL: TinyML with online-learning on microcontrollers. [Online]. Available: arXiv:2103.08295

  87. Cai H, Gan C, Zhu L, Han S (2020) Tinytl: Reduce activations, not trainable parameters for efficient on-device learning. [Online]. Available: arXiv:2007.11622

  88. Signoretti G, Silva M, Andrade P, Silva I, Sisinni E, Ferrari P (2021) An evolving TinyML compression algorithm for IoT environments based on data eccentricity, Sensors, 21(12):4153. Jun 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/12/4153

  89. MA Rashid HA, Ren H MT (2020) Tiny RespNet: A scalable multimodal TinyCNN processor for automatic detection of respiratory symptoms

  90. Coffen B, Mahmud M (2021) Tinydl: Edge computing and deep learning based real-time hand gesture recognition using wearable sensor, In 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM). IEEE, Mar 2021, p 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/9399005/

  91. Vuletic M, Mujagic V, Milojevic N, Biswas D (2021) Edge AI framework for healthcare applications, In Proceedings of the 30th International Joint Conference on Artificial Intelligence, Virtual, pp 19–26

  92. Raza W, Osman A, Ferrini F, Natale FD (2021) Energy-efficient inference on the edge exploiting tinyml capabilities for uavs, Drones, 5(4):127, Oct 2021. [Online]. Available: https://www.mdpi.com/2504-446X/5/4/127

  93. Awad AI, Fouda MM, Khashaba MM, Mohamed ER, Hosny KM (2022) Utilization of mobile edge computing on the internet of medical things: A survey, ICT Express, no. xxxx, May 2022. [Online]. Available: https://doi.org/10.1016/j.icte.2022.05.006

  94. Pai K, Kallimani R, Iyer S, Uma Maheswari B, Khanai R, Torse D (2023) A Survey on Brain-Computer Interface and Related Applications. Bentham Science Publishers, May 2023, p 210–228. [Online]. Available: https://www.eurekaselect.com/node/216769

  95. Merk T, Peterson V, Köhler R, Haufe S, Richardson RM, Neumann W-J (2022) Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation, Exp Neurol, 351(2021):113993. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0014488622000188

  96. Bharadwaj HK, Agarwal A, Chamola V, Lakkaniga NR, Hassija V, Guizani M, Sikdar B (2021) A review on the role of machine learning in enabling iot based healthcare applications, IEEE Access, 9:38859–38890, [Online]. Available: https://ieeexplore.ieee.org/document/9355143/

  97. Padhi P, Charrua-Santos F (2021) 6g enabled tactile internet and cognitive internet of healthcare everything: Towards a theoretical framework, Applied System Innovation, 4(3):66. [Online]. Available: https://www.mdpi.com/2571-5577/4/3/66

  98. de Prado M, Rusci M, Capotondi A, Donze R, Benini L, Pazos N (2021) Robustifying the deployment of tinyml models for autonomous mini-vehicles, Sens, 21(4):1339, Feb 2021. [Online]. Available: https://doi.org/10.3390/s21041339

  99. Roshan AN, Gokulapriyan B, Siddarth C, Kokil P (2021) Adaptive traffic control with tinyml, In Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp 451–455

  100. Nakhle F, Harfouche AL (2021) Ready, steady, go AI: A practical tutorial on fundamentals of artificial intelligence and its applications in phenomics image analysis, Patt, 2(9): 100323, Sep 2021. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2666389921001719

  101. Curnick DJ, Davies AJ, Duncan C, Freeman R, Jacoby DMP, Shelley HTE, Rossi C, Wearn OR, Williamson MJ, Pettorelli N (2022) SmallSats: A new technological frontier in ecology and conservation? Remote Sensing in Ecology and Conservation, 8(2):139–150 Apr 2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/rse2.239

  102. Alongi F, Ghielmetti N, Pau D, Terraneo F, Fornaciari W (2020) Tiny neural networks for environmental predictions: An integrated approach with Miosix, In IEEE International Conference on Smart Computing (SMARTCOMP), p 350–355

  103. Lord M (2021) TinyML, anomaly detection, Ph.D. dissertation, California State University, Northridge

  104. Jørgensen Njor E, Madsen J, Fafoutis X (2022) A primer for tinyML predictive maintenance: Input and model optimisation, In Proceedings of 18th International Conference on Artificial Intelligence Applications and Innovations, 647:67–78. [Online]. Available: https://ifipaiai.org/2022/

  105. Quer J, Steinbach M (2019) Handling sign language data: The impact of modality, Front Psych, 10:483 Mar 2019. [Online]. Available: https://www.frontiersin.org/article/10.3389/fpsyg.2019.00483/full

  106. B SK, P R, Hiremath RB, Ramadurgam VS, Shaw DK (2022) Survey on implementation of tinyml for real-time sign language recognition using smart gloves, In Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), pp 1–7

  107. Rosero-Montalvo PD, Godoy-Trujillo P, Flores-Bosmediano E, Carrascal-GarcÍa J, Otero-Potosi S, Benitez-Pereira H, Peluffo-Ordóñez DH (2018) Sign language recognition based on intelligent glove using machine learning techniques, In 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), pp 1–5

  108. V V, C RA, Prasanna R, Kakarla PC, PJ VS, Mohan N (2022) Implementation of tiny machine learning models on arduino 33 ble for gesture and speech recognition

  109. Day M (2022) Programmable power management in the world of IoT, Dec 2022. [Online]. Available: https://embeddedcomputing.com/technology/analog-and-power/batteries-power-supplies/programmable-power-management-in-the-world-of-iot

  110. Omar.unwrap (2022) How to estimate your embedded IoT device power consumption, Apr 2022. [Online]. Available: https://dev.to/apollolabsbin/3-simple-steps-to-estimate-your-embedded-iot-device-power

  111. Reddi VJ, Plancher B, Kennedy S, Moroney L, Warden P, Agarwal A, Banbury C, Banzi M, Bennett M, Brown B, Chitlangia S, Ghosal R, Grafman S, Jaeger R, Krishnan S, Lam M, Leiker D, Mann C, Mazumder M, Pajak D, Ramaprasad D, Smith JE, Stewart M, Tingley D (2021) Widening access to applied machine learning with tinyml

  112. Situnayake D (2020) Mlops for tinyml. [Online]. Available: https://sites.google.com/g.harvard.edu/tinyml/lectures?authuser=0#h.m9uxfxjs8d5u

  113. Schizas N, Karras A, Karras C, Sioutas S (2022) Tinyml for ultra-low power ai and large scale iot deployments: A systematic review, Future Internet, 14(12):363 Dec 2022. [Online]. Available: https://doi.org/10.3390/fi14120363

  114. López OLA, Alves H, Souza RD, Montejo-Sánchez S, Fernández EMG, Latva-Aho M (2021) Massive wireless energy transfer: Enabling sustainable IoT toward 6G era. IEEE Internet Things J, 8(11):8816–8835

    Article  Google Scholar 

  115. Li H, Zhang J, Li Z, Liu J, Wang Y (2023) Improvement of min-entropy evaluation based on pruning and quantized deep neural network. IEEE Trans Inf Forensic Sec, 18:1410–1420

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript

Author information

Authors and Affiliations

Authors

Contributions

All the Authors contributed equally to the study and approved the final manuscript

Corresponding author

Correspondence to Krishna Pai.

Ethics declarations

Conflicts of interest

The authors have no conflict of interests to disclose

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallimani, R., Pai, K., Raghuwanshi, P. et al. TinyML: Tools, applications, challenges, and future research directions. Multimed Tools Appl 83, 29015–29045 (2024). https://doi.org/10.1007/s11042-023-16740-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16740-9

Keywords

Navigation