Skip to main content
Log in

A Survey on Semantic Communications for Intelligent Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Research on intelligent wireless network aims at the development of a human society which is ubiquitous and mobile, simultaneously providing solutions to the coverage, capacity, and computing issues. These networks will focus on provisioning intelligent use-cases through higher data-rates over the millimeter waves and the Tera-Hertz frequency. However, at such high frequencies, multiple non-desired phenomena such as, atmospheric absorption and blocking occur which create a bottleneck owing to resource scarcity. Hence, existing trend of exactly reproducing transmitted data at the receiver will result in a constant need for higher bandwidth. A possible solution to such a challenge lies in semantic communications which focuses on meaning (relevance or context) of the received data. This article presents a detailed survey on the recent technological trends in regard to semantic communications for intelligent wireless networks. Initially, the article focuses on the semantic communications architecture including the model, and source and channel coding. Next, cross-layer interaction, and various goal-oriented communication applications are detailed. Further, overall semantic communications trends are presented following which, the key challenges and issues are detailed. Lastly, this survey article is an attempt to significantly contribute towards initiating future research in the area of semantic communications for the intelligent wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study. The pre-print version of this article is available at: http://arxiv.org/abs/2202.03705

Code Availability

Not applicable.

References

  1. Sharma, A., & Jha, R. K. (2021). Comprehensive survey on security issues in 5G wireless communication network using beamforming approach. Wireless Personal Communications, 119, 3447–3501.

    Article  Google Scholar 

  2. David, K., & Berndt, H. (2018). 6G vision and requirements: Is there any need for beyond 5G? IEEE Vehicular Technology Magazine, 13, 72–80.

    Article  Google Scholar 

  3. ‘The Vision of 6G. (2020). Bring the next hyper-connected experience to every corner of life’, Samsung, White Paper, 2020. [Online]. Available: https://www.news.samsung.com/global/samsungs-6g-white-paper-lays-out-the-companys-vision-for-the-next-generation-of-communications-technology

  4. Iyer, S., Patil, A., Bhairanatti, S., Halagatti, S., & Pandya, R. J. (2022). A Survey on Technological Trends to Enhance Spectrum-Efficiency in 6G Communications. Trans Indian Natl. Acad. Eng. 7(4), 1093–1120.

  5. Saarnisaari, H., et al. (2020). “6G White Paper on Connectivity for Remote Areas”, 6G Research Visions, no. 5, University of Oulu, 2020. [Online]. Available: http://urn.fi/urn:isbn:9789526226750

  6. Rajatheva, N., et al. (2020). “White paper on broadband connectivity in 6G,” 6G Research Visions, no. 10, University of Oulu. 2020. [Online]. Available: http://urn.fi/urn:isbn:9789526226798

  7. Tekbıyık, K., Ekti, A. R., Kurt, G. K., & Görçinad, A. (2019). Terahertz band communication systems: Challenges, novelties and standardization efforts. Physical Communication, 35, 1–18.

    Article  Google Scholar 

  8. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.

    Article  MathSciNet  MATH  Google Scholar 

  9. Sarieddeen, H., et al. (2020). Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Communications Magazine, 58(5), 69–75.

    Article  Google Scholar 

  10. Corre, Y., Gougeon, G., Dor´e, J.-B., Bicaıs, S., Miscopein, B., Faussurier, E., Saad, M., Palicot, J., & Bader, F. (2019). Sub-thz spectrum as enabler for 6G wireless communications up to 1 tbit/s. 6G Wireless Summit, Levi Lapland, Finland. hal-01993187.

  11. Popovski, P., Simeone, O., Boccardi, F., Gunduz, D., & Sahin, O. (2020). Semantic effectiveness filtering and control for post-5G wireless connectivity. Journal of the Indian Institute of Science, 100, 435–443.

    Article  Google Scholar 

  12. Alsharif, M. H., Kelechi, A. H., Albreem, M. A., Chaudhry, S. A., Zia, M. S., & Kim, S. (2020). Sixth generation (6G) wireless networks: Vision, research activities, challenges and potential solutions. Symmetry, MDPI, 12(4), 676.

    Article  Google Scholar 

  13. Kohlas, J. (2012). Information algebras: Generic structures for inference. Springer.

    MATH  Google Scholar 

  14. Calude, C. S. (2013). Information and randomness: An algorithmic perspective. Springer.

    MATH  Google Scholar 

  15. Guler, B., Yener, A., & Swami, A. (2018). The semantic communication game. IEEE Transactions on Cognitive Communications and Networking, 4(4), 787–802.

    Article  Google Scholar 

  16. Kountouris, M., & Pappas, N. (2021). Semantics-empowered communication for networked intelligent systems. IEEE Communications Magazine, 59(6), 96–102.

    Article  Google Scholar 

  17. Xie, H., Qin, Z., Li, G. Y., & Juang, B. H. (2021). Deep learning enabled semantic communication systems. IEEE Transactions on Signal Processing, 69, 2663–2675.

    Article  MathSciNet  MATH  Google Scholar 

  18. Weng, Z., & Qin, Z. (2021). Semantic communication systems for speech transmission. IEEE Journal on Selected Areas in Communications, 39(8), 2434–2444.

    Article  Google Scholar 

  19. Tong, H., Yang, Z., Wang, S., Hu, Y., Saad, W., Yin, C. (2021). Federated learning based audio semantic communication over wireless networks. In IEEE Global Communications Conference (GLOBECOM) (pp. 1–6).

  20. Zhang, P., Gao, WXu. H., Niu, K., Xu, X., Qin, X., Yuan, C., Qin, Z., Zhao, H., Wei, J., & Zhang, F. (2021). Toward wisdom-evolutionary and primitive-concise 6G: A new paradigm of semantic communication networks. Engineering, 8, 60–73.

    Article  Google Scholar 

  21. Shi, G., Xiao, Y., Li, Y., Gao, D., & Xie, X. (2021). Semantic communication networking for the intelligence of everything. Chinese Journal on Internet of Things, 5(2), 26–36.

    Google Scholar 

  22. Sana, M., & Strinati, E. C. (2021). Learning semantics: An opportunity for effective 6G communications”, 2021. [Online]. Available: https://www.arxiv.org/abs/2110.08049

  23. Shi, G., Xiao, Y., Li, Y., & Xie, X. (2021). From semantic communication to semantic-aware networking: Model, architecture, and open problems. IEEE Communications Magazine, 59, 44–50.

    Article  Google Scholar 

  24. Zhang, P., Li, L., Niu, K., Li, Y., Lu, G., & Wang, Z. (2021). An intelligent wireless transmission toward 6G. Intelligent and Converged Networks, 2(3), 244–257.

    Article  Google Scholar 

  25. Bao, J., Basu, P., Dean, M., Partridge, C., Swami, A., Leland, W., & Hendler, J. A. (2011). Towards a theory of semantic communication. IEEE Network Science Workshop (pp. 110–117).

  26. Basu, P., Bao, J., Dean, M., & Hendler, J. (2014). Preserving quality of information by using semantic relationships. Pervasive and Mobile Computing, 11, 188–202.

    Article  Google Scholar 

  27. Juba, B., & Sudan, M. (2008). Universal semantic communication ii: A theory of goal-oriented communication. Electronic Colloquium on Computational Complexity (ECCC), 15.

  28. Goldreich, O., Juba, B., & Sudan, M. (2012). A theory of goal-oriented communication. Journal of the ACM (JACM), 59, 1–65.

    Article  MathSciNet  MATH  Google Scholar 

  29. Uysal, et al., E. (2021). Semantic Communications in Networked Systems. [Online]. Available: https://www.arxiv.org/abs/2103.05391

  30. Shi, G., Gao, D., Song, X., Chai, J., Yang, M., Xie, X., Li, L., Li, X. (2021). A new communication paradigm: From bit accuracy to semantic fidelity, 2021. [Online]. Available: https://arxiv.org/abs/2101.12649

  31. Russell, S. J., & Norvig, P. (2020). Artificial intelligence-a modern approach, 4th edition.

  32. Han, X., & Kwoh, C. K. (2019). Natural Language processing approaches in bioinformatics. In Encyclopedia of Bioinformatics and Computational Biology.

  33. Shakkottai, S., Rappaport, T. S., & Karlsson, P. C. (2003). Cross-layer design for wireless networks. IEEE Communications Magazine, 41(10), 74–80.

    Article  Google Scholar 

  34. Fu, B., Xiao, Y., Deng, H. J., & Zeng, H. (2014). A survey of cross-layer designs in wireless networks. IEEE Communications Surveys & Tutorials, 16(1), 110–126.

    Article  Google Scholar 

  35. Bing, J., Liu, S., & Yang, Y. (2014). Fractal cross-layer service with integration and interaction in internet of things. International Journal of Distributed Sensor Networks, SAGE Journals, 10(3), 760.

    Google Scholar 

  36. Berndt, H. (2008). Towards 4G technologies: Services with initiative. Wiley.

    Book  Google Scholar 

  37. Liu, Y. H. (2010). Introduction to Internet of Things. Science Press.

    Google Scholar 

  38. Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805.

    Article  MATH  Google Scholar 

  39. Reddy, S., Samanta, V., Burke, J., Estrin, D., Hansen, M., & Srivastava, M. (2009). “Mobisense—Mobile network services for coordinated participatory sensing”. In International Symposium on Autonomous Decentralized Systems (ISADS ’09) (pp. 231–236). Athens.

  40. Achir, M., Abdellia, A., Mokdad, L., & Benothman, J. (2022). Service discovery and selection in IoT: A survey and a taxonomy. Journal of Network and Computer Applications, 200.

  41. Ahmed, A. H., Omar, N. M., & Ibrahim, H. M. (2019). Secured service discovery technique in IoT. Journal of Communications, 14(1), 40–46.

    Article  Google Scholar 

  42. Ray, P.P. (2018). A survey on Internet of Things architectures. Journal of King Saud University - Computer and Information Sciences, 30(3), 291–319

    Article  Google Scholar 

  43. Jia, B. (2013). Research on semantic-based service architecture and key algorithms for the Internet of Things. Ph.D. Thesis, Jilin University.

  44. Gangemi, A., Mika, P., Sabou, M., & Oberle, D. (2003). Technical Report: An Ontology of Services and Service Descriptions, Technical Report, 2003. [Online]. Available: https://www.researchgate.net/publication/228938556_Technical_Report_An_Ontology_of_Services_and_Service_Descriptions

  45. Ballé, J., Shrivastava, A., & Toderici, G. (2020). End-to-end learning of compressible features. In IEEE International Conference on Image Processing (ICIP) (pp. 3349–3353).

  46. Tu, H., et al. (2021). Semantic scalable image compression with cross-layer priors. In 29th ACM International Conference on Multimedia.

  47. Dodge, S., & Karam, L. (2016). Understanding how image quality affects deep neural networks. In 8th IEEE international conference on quality of multimedia experience (QoMEX) (pp. 1–6).

  48. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In IEEE conference on computer vision and pattern recognition (pp. 770–778).

  49. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In IEEE conference on computer vision and pattern recognition (pp. 4700–4708).

  50. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In IEEE 3rd international conference on learning representations (ICLR), CA, USA.

  51. Dosovitskiy, A., & Brox, T. (2016). Inverting visual representations with convolutional networks. In IEEE conference on computer vision and pattern recognition (pp. 4829–4837).

  52. Chen, Z., Fan, K., Wang, S., Duan, L., Lin, W., & Kot, A. C. (2019). Toward intelligent sensing: Intermediate deep feature compression. IEEE Transactions on Image Processing, 29, 2230–2243.

    Article  MATH  Google Scholar 

  53. Chen, Z., Fan, K., Wang, S., Yu Duan, L., Lin, W., & Kot, A. (2019). Lossy intermediate deep learning feature compression and evaluation. In IEEE 27th ACM international conference on multimedia (pp. 2414–2422).

  54. Choi, H., & Bajić, I. V. (2018). Deep feature compression for collaborative object detection. In IEEE 25th IEEE international conference on image processing (ICIP) (pp. 3743–3747).

  55. Choi, H., & Bajić, I. V. (2018). Near-lossless deep feature compression for collaborative intelligence. In IEEE 20th international workshop on multimedia signal processing (MMSP) (pp. 1–6).

  56. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181–204.

    Article  Google Scholar 

  57. Choi, H., & Bajic, I. V. (2019). Deep frame prediction for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 30(7), 1843–1855.

    Google Scholar 

  58. Juba, B. (2011). Universal semantic communication. Springer.

    Book  MATH  Google Scholar 

  59. Park, J., Samarakoon, S., Bennis, M., & Debbah, M. (2019). Wireless network intelligence at the edge. Proceedings of the IEEE, 107, 2204–2239.

    Article  Google Scholar 

  60. Skatchkovsky, N., & Simeone, O. (2019). Optimizing pipelined computation and communication for latency-constrained edge learning. IEEE Communications Letters, 23, 1542–1546.

    Article  Google Scholar 

  61. Mohammad, U., & Sorour, S. (2019). Adaptive task allocation for mobile edge learning. In IEEE wireless communications and networking conference workshop (WCNCW) (pp. 1–6).

  62. Amiri, M. M., & Gunduz, D. (2019). Machine learning at the wireless edge: Distributed stochastic gradient descent over-the-air. In IEEE International Symposium on Information Theory (ISIT) (pp. 1432–1436).

  63. Strinati, E. C., & Barbarossa, S. (2021). 6G networks: Beyond Shannon towards semantic and goal-oriented communications, Computer Networks, 190.

  64. Tishby, N., Pereira, F. C., & Bialek, W. (2000). The information bottleneck method. In 37th annual Allerton Conference on Communication, Control, and Computing (pp. 368–377).

  65. Shamir, O., Sabato, S., & Tishby, N. (2010). Learning and generalization with the information bottleneck. Theoretical Computer Science, 411, 2696–2711.

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107, 1738–1762.

    Article  Google Scholar 

  67. Peltonen, E., et al. (2020). “6G white paper on edge intelligence”, 2020. [Online]. Available: https://arxiv.org/abs/2004.14850

  68. Chaoub, A., et al. (2021). 6G for bridging the digital divide: Wireless connectivity to remote areas. IEEE Wireless Communications, 1–9.

  69. Barbarossa, S., Sardellitti, S., Ceci, E., & Merluzzi, M. (2018). The edge cloud: A holistic view of communication, computation, and caching (pp. 419–444). Cooperative and Graph Signal Processing.

    Google Scholar 

  70. Ndikumana, A., Tran, N. H., Ho, T. M., Han, Z., Saad, W., Niyato, D., & Hong, C. S. (2020). Joint communication, computation, caching, and control in big data multi-access edge computing. IEEE Transactions on Mobile Computing, 19, 1359–1374.

    Article  Google Scholar 

  71. Anselme, N. (2019). Intelligent edge: Joint communication, computation, caching, and control in collaborative multi-access edge computing. Ph.D. thesis, Kyung Hee University, South Korea.

  72. Wang, Z., Gao, Y., Fang, C., Sun, Y., & Si, P. (2019). Optimal control design for connected cruise control with edge computing, caching, and control. In IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 1–6).

  73. Sardellitti, S., Scutari, G., & Barbarossa, S. (2015). Joint optimization of radio and computational resources for multicell mobile-edge computing. IEEE Transactions on Signal and Information Processing over Networks, 1, 89–103.

    Article  MathSciNet  Google Scholar 

  74. Mao, Y., Zhang, J., Song, S., & Letaief, K. B. (2017). Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems. IEEE Transactions on Wireless Communications, 16, 5994–6009.

    Article  Google Scholar 

  75. Merluzzi, M., Di Lorenzo, P., Barbarossa, S., & Frascolla, V. (2020). Dynamic computation o_oading in multi-access edge computing via ultra-reliable and low-latency communications. IEEE Transactions on Signal and Information Processing over Networks, 6, 342–356.

    Article  MathSciNet  Google Scholar 

  76. Chen, T., Barbarossa, S., Wang, X., Giannakis, G. B., & Zhang, Z. L. (2019). Learning and management for internet of things: Accounting for Adaptivity and scalability. Proceedings of the IEEE, 107, 778–796.

    Article  Google Scholar 

  77. Paschos, G., Iosifdis, G., & Caire, G. (2020). Cache optimization models and algorithms, 2020. [Online]. Available: https://arxiv.org/abs/1912.12339

  78. Li, S., & Avestimehr, S. (2020). Coded computing: Mitigating fundamental bottlenecks in large-scale distributed computing and machine learning. Now Foundations and Trends, 2020. [Online]. Available: https://www.nowpublishers.com/article/DownloadSummary/CIT-103

  79. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.

    Article  Google Scholar 

  80. Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric deep learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34, 18–42.

    Article  Google Scholar 

  81. Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computing Sciences, 2, 160. https://doi.org/10.1007/s42979-021-00592-x

    Article  Google Scholar 

  82. Telikani, A., Tahmassebi, A., Banzhaf, W., & Gandomi, A. H. (2021). Evolutionary machine learning: A survey. ACM Computing Surveys, 54(8), 1.

    Article  Google Scholar 

  83. Kirk, R., Zhang, A., Grefenstette, E., & Rocktäschel, T. (2021). A survey of generalisation in deep reinforcement learning. In IEEE Intelligent Vehicles Symposium (IV) (pp. 1073–1080).

  84. Sun, S., Cao, Z., Zhu, H., & Zhao, J. (2020). A survey of optimization methods from a machine learning perspective. IEEE Transactions on Cybernetics, 50(8), 3668–3681.

    Article  Google Scholar 

  85. Barbarossa, S., & Sardellitti, S. (2020). Topological signal processing over simplicial complexes. IEEE Transactions on Signal Processing, 68, 2992–3007.

    Article  MATH  Google Scholar 

  86. Dorner, S., Cammerer, S., Hoydis, J., & Ten Brink, S. (2017). Deep learning based communication over the air. IEEE Journal of Selected Topics in Signal Processing, 12, 132–143.

    Article  Google Scholar 

  87. Balevi, E., & Andrews, J. G. (2019). One-bit ofdm receivers via deep learning. IEEE Transactions on Communications, 67, 4326–4336.

    Article  Google Scholar 

  88. Farsad, N., & Goldsmith, A. (2018). Neural network detection of data sequences in communication systems. IEEE Transactions on Signal Processing, 66, 5663–5678.

    Article  MathSciNet  MATH  Google Scholar 

  89. Ye, H., Li, G. Y., Juang, B. H. F., & Sivanesan, K. (2018). Channel agnostic end-to- end learning based communication systems with conditional gan. In IEEE Globecom Workshops (GC Wkshps) (pp. 1–5).

  90. Dandachi, G., De Domenico, A., Hoang, D. T., & Niyato, D. (2020). An artificial intelligence framework for slice deployment and orchestration in 5G networks. IEEE Transactions on Cognitive Communications and Networking, 6(2), 858–871.

    Article  Google Scholar 

  91. Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10, 1–19.

    Article  Google Scholar 

  92. Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37, 50–60.

    Google Scholar 

  93. Smith, V., Chiang, C. K., Sanjabi, M., & Talwalkar, A. S. (2017). Federated multitask learning. Advances in Neural Information Processing Systems, 4424–4434.

  94. Shome, D., Waqar, O., & Khan, W. U. (2022). Federated learning and next generation wireless communications: A survey on bidirectional relationship. Transactions on Emerging Telecommunications Technologies, 33, 1–18.

    Article  Google Scholar 

  95. Abdar, M., et al. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243–297.

    Article  Google Scholar 

  96. Kim, H. (2022). Artificial intelligence for 6G. Springer.

    Book  Google Scholar 

  97. Rekkas, V. P., Sotiroudis, S., Sarigiannidis, P., Wan, S., Karagiannidis, G. K., & Goudos, S. K. (2021). Machine learning in beyond 5G/6G networks—State-of-the-Art and future trends. Electronics, MDPI, 10, 2786.

    Article  Google Scholar 

  98. Rokhsaritalemi, S., Sadeghi-Niaraki, A., & Choi, S.-M. (2020). A review on mixed reality: Current trends, challenges and prospects. Applied Science MDPI, 10, 636.

    Article  Google Scholar 

  99. Shoydin, S. A., & Pazoev, A. L. (2021). Transmission of 3D holographic information via conventional communication channels and the possibility of multiplexing in the implementation of 3D hyperspectral images. Photonics, MDPI, 8, 448.

    Article  Google Scholar 

  100. Manolova, A., Tonchev, K., Poulkov, V., Dixir, S., & Lindgren, P. (2021). Context-aware holographic communication based on semantic knowledge extraction. Wireless Personal Communications., 120, 2307–2319.

    Article  Google Scholar 

  101. Shahraki, A., Abbasi, M., Piran, Md. J., & Taherkordi, A. (2022). A comprehensive survey on 6G networks: Applications, Core services, enabling technologies, and future challenges, 2022. [Online]. Available: arXiv:2101.12475v2

  102. Padhi, P. K., & Charrua-Santos, F. (2021). 6G enabled tactile internet and cognitive internet of healthcare everything: Towards a theoretical framework. Applied Systems, Innovation MDPI, 4, 66.

    Article  Google Scholar 

  103. Kalfa, M., Gok, M., Atalik, A., Tegin, B., Duman, T. M., & Arikan, O. (2021). Towards goal-oriented semantic signal processing: Applications and future challenges. Digital Signal Processing, 119, 103–134.

    Article  Google Scholar 

  104. Lan, Q., Wen, D., Zhang, Z., Zeng, Q., Chen, X., Popovski, P., & Huang, K. (2021). What is semantic communication? A view on conveying meaning in the era of machine intelligence. Journal of Communications and Information Networks, 6(4), 336–371.

    Article  Google Scholar 

  105. Chehimi, M., Chaccour, C., & Saad, W. (2022). Quantum semantic communications: An unexplored avenue for contextual networking, 2022. [Online]. Available: arXiv:2205.02422.

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Sridhar Iyer.

Ethics declarations

Conflict of interests

The authors have no conflict of interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, S., Khanai, R., Torse, D. et al. A Survey on Semantic Communications for Intelligent Wireless Networks. Wireless Pers Commun 129, 569–611 (2023). https://doi.org/10.1007/s11277-022-10111-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-10111-7

Keywords

Navigation