Skip to main content
Log in

A quantitative analysis of imaging features in lung CT images using the RW-T hybrid segmentation model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Lung cancer is the leading cause of cancer death worldwide. A lung nodule is the most common symptom of lung cancer. The analysis of lung cancer relies heavily on the segmentation of nodules, which aids in optimal treatment planning. However, because there are several lung nodules, accurate segmentation remains challenging. We propose an RW-T hybrid approach capable of segmenting all types of nodules, primarily externally attached nodules (juxta-pleural and juxta-vascular), and estimate the effect of nodule segmentation techniques to assess the quantitative Computer Tomography (CT) imaging features in lung adenocarcinoma. On 301 lung CT images from 40 patients with lung adenocarcinoma cases from the LungCT- Diagnosis dataset publicly available in The Cancer Imaging Archive, we used a random-walk strategy and a thresholding method to implement nodule segmentation (TCIA). We extracted two quantitative CT features from the segmented nodule using morphological techniques: convexity and entropy scores. The proposed method’s resultant segmented nodules are compared to the single-click ensemble segmentation method and validated using ground-truth segmented nodules. Our proposed segmentation approach had a high level of agreement with ground truth delineations, with a dice-similarity coefficient of 0.7884, compared to single-click ensemble segmentation, with a dice-similarity metric of 0.6407.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Fig. 8
Fig. 9
Algorithm 2
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The dataset analysed during the current study is publicly available in the Cancer Imaging Archive (https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=19039728).

References

  1. Siegel RL, Miller KD, Fuchs HE (2022) Jemal A (2022) Cancer statistics. CA a Cancer J Clinic 72(1):7–33

    Article  Google Scholar 

  2. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Bray F (2018) Global cancer observatory: cancer today. Lyon, France: Int Agency Res Cancer 3(20):2019

    Google Scholar 

  3. Araujo LH, Horn L, Merritt RE, Shilo K, Xu-Welliver M, Carbone DP (2020) Cancer of the Lung: Non-Small Cell Lung Cancer and Small Cell Lung Cancer, Sixth, Edition. Elsevier Inc, Abeloff’s clinical oncology

    Google Scholar 

  4. Rego J, Tan KM (2006) Advances in imaging—the changing environment for the imaging specialist. Perm J 10(1):26

    Article  Google Scholar 

  5. Henschke CI, McCauley DI, Yankelevitz DF, Naidich DP, McGuinness G, Miettinen OS, Smith JP (1999) Early Lung Cancer Action Project: overall design and findings from baseline screening. The Lancet 354(9173):99–105

    Article  Google Scholar 

  6. Valente IRS, Cortez PC, Neto EC, Soares JM, de Albuquerque VHC, Tavares JMR (2016) Automatic 3D pulmonary nodule detection in CT images: a survey. Comput Methods Programs Biomed 124:91–107

    Article  Google Scholar 

  7. Zhang G, Yang Z, Gong L, Jiang S, Wang L, Cao X, Liu Z (2019) An appraisal of nodule diagnosis for lung cancer in CT images. J Med Syst 43:1–18

    Article  Google Scholar 

  8. Mukhopadhyay S (2016) A segmentation framework of pulmonary nodules in lung CT images. J Digit Imaging 29:86–103

    Article  Google Scholar 

  9. Kostis WJ, Reeves AP, Yankelevitz DF, Henschke CI (2003) Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. IEEE Trans Med Imaging 22(10):1259–1274

    Article  Google Scholar 

  10. Xiuhua G, Tao S, Zhigang L (2011) Prediction models for malignant pulmonary nodules based-on texture features of CT image. In: Theory and Applications of CT Imaging and Analysis. IntechOpen

  11. Hao R, Qiang Y, Yan X (2018) Juxta-vascular pulmonary nodule segmentation in PET-CT imaging based on an LBF active contour model with information entropy and joint vector. Computational and mathematical methods in medicine, 2018

  12. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Prior F (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057

    Article  Google Scholar 

  13. Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, Aerts HJ (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. Plos One 9(7):e102107

    Article  Google Scholar 

  14. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimisation via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  15. Xiang D, Tian J, Yang F, Yang Q, Zhang X, Li Q, Liu X (2010) Skeleton cuts—An efficient segmentation method for volume rendering. IEEE Trans Visual Comput Graphics 17(9):1295–1306

    Article  Google Scholar 

  16. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  Google Scholar 

  17. Chen YT (2010) A level set method based on the Bayesian risk for medical image segmentation. Pattern Recogn 43(11):3699–3711

    Article  Google Scholar 

  18. Lu K, Higgins WE (2011) Segmentation of the central-chest lymph nodes in 3D MDCT images. Comput Biol Med 41(9):780–789

    Article  Google Scholar 

  19. Tao Y, Lu L, Dewan M, Chen AY, Corso J, Xuan J, Krishnan A (2009). Multi-level ground glass nodule detection and segmentation in CT lung images. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2009: 12th International Conference, London, UK, September 20–24, 2009, Proceedings, Part II 12 (pp. 715–723). Springer Berlin Heidelberg

  20. Wu D, Lu L, Bi J, Shinagawa Y, Boyer K, Krishnan A, Salganicoff M (2010) Stratified learning of local anatomical context for lung nodules in CT images. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 2791–2798). IEEE

  21. Dehmeshki J, Amin H, Valdivieso M, Ye X (2008) Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE Trans Med Imaging 27(4):467–480

    Article  Google Scholar 

  22. Gu Y, Kumar V, Hall LO, Goldgof DB, Li CY, Korn R, Gillies RJ (2013) Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach. Patt Recognit 46(3):692–702

    Article  Google Scholar 

  23. Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K (2012) Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol 22:796–802

    Article  Google Scholar 

  24. Gatenby RA, Grove O, Gillies RJ (2013) Quantitative imaging in cancer evolution and ecology. Radiology 269(1):8–14

    Article  Google Scholar 

  25. Nie Q, Zou YB, Lin JCW (2021) Feature extraction for medical CT images of sports tear injury. Mob Netw Appl 26:404–414

    Article  Google Scholar 

  26. Hawkins SH, Korecki JN, Balagurunathan Y, Gu Y, Kumar V, Basu S, Gillies RJ (2014) Predicting outcomes of nonsmall cell lung cancer using CT image features. IEEE Access 2:1418–1426

    Article  Google Scholar 

  27. Grove O, Berglund AE, Schabath MB, Aerts HJ, Dekker A, Wang H, Gillies RJ (2021) Correction: Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. Plos one 16(3):e0248541

    Article  Google Scholar 

  28. Paul R, Hawkins SH, Balagurunathan Y, Schabath M, Gillies RJ, Hall LO, Goldgof DB (2016) Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography 2(4):388–395

    Article  Google Scholar 

  29. Shayesteh SP, Shiri I, Karami AH, Hashemian R, Kooranifar S, Ghaznavi H, Shakeri-Zadeh A (2020) Predicting lung cancer Patients’ survival time via logistic regression-based models in a quantitative radiomic framework. J Biomed Phys Eng 10(4):479

    Google Scholar 

  30. Velazquez ER, Parmar C, Jermoumi M, Mak RH, van Baardwijk A, Fennessy FM, Aerts HJ (2013) Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep 3(1):3529

    Article  Google Scholar 

  31. Wang S, Zhou M, Gevaert O, Tang Z, Dong D, Liu Z, Jie T (2017) A multi-view deep convolutional neural networks for lung nodule segmentation. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1752–1755). IEEE

  32. Qi LL, Wu BT, Tang W, Zhou LN, Huang Y, Zhao SJ, Wang JW (2020) Long-term follow-up of persistent pulmonary pure ground-glass nodules with deep learning–assisted nodule segmentation. Eur Radiol 30:744–755

    Article  Google Scholar 

  33. Li X, Li B, Liu F, Yin H, Zhou F (2020) Segmentation of pulmonary nodules using a GMM fuzzy C-means algorithm. Ieee Access 8:37541–37556

    Article  Google Scholar 

  34. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18 (pp. 234–241). Springer International Publishing

  35. Funke, W., Veasey, B., Zurada, J., Frigui, H., Amini, A. (2020). 3D U-Net for segmentation of pulmonary nodules in volumetric CT scans from multi-annotator truth estimation. In: Medical Imaging 2020: Computer-Aided Diagnosis (Vol. 11314, pp. 520–527). SPIE

  36. Xiao Z, Liu B, Geng L, Zhang F, Liu Y (2020) Segmentation of lung nodules using improved 3D-UNet neural network. Symmetry 12(11):1787

    Article  Google Scholar 

  37. Savic M, Ma Y, Ramponi G, Du W, Peng Y (2021) Lung nodule segmentation with a region-based fast marching method. Sensors 21(5):1908

    Article  Google Scholar 

  38. Djenouri Y, Belhadi A, Yazidi A, Srivastava G, Chatterjee P, Lin JCW (2022). An Intelligent Collaborative Image-Sensing System for Disease Detection. IEEE Sensors J

  39. Sun XJ, Lin JCW (2022) A target recognition algorithm of multi-source remote sensing image based on visual Internet of Things. Mob Netw Appl 27(2):784–793

    Article  Google Scholar 

  40. Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783

    Article  Google Scholar 

  41. Goldgof Dmitry HL, Samuel H, Matthew S, Olya S, Alberto G, Yoganand B, Robert G (2017) Long and short survival in adenocarcinoma lung CTs. Cancer Imaging Archive

  42. Grove O, Berglund AE, Schabath MB, Aerts HJ, Dekker A, Wang H, Gillies RJ (2015) Data from: Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PloS one 10(3):e0118261

    Article  Google Scholar 

  43. MacMahon H, Naidich DP, Goo JM, Lee KS, Leung AN, Mayo JR, Bankier AA (2017) Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology 284(1):228–243

    Article  Google Scholar 

  44. Yushkevich PA, Gao Y, Gerig G (2016). ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 3342–3345). IEEE

  45. Yushkevich PA, Pashchinskiy A, Oguz I, Mohan S, Schmitt JE, Stein JM, Gerig G (2019) User-guided segmentation of multi-modality medical imaging datasets with ITK-SNAP. Neuroinformatics 17:83–102

    Article  Google Scholar 

  46. Adiraju RV, Elias S (2021) A survey on lung CT datasets and research trends. Res Biomed Eng 37(2):403–418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Elias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adiraju, R., Elias, S. A quantitative analysis of imaging features in lung CT images using the RW-T hybrid segmentation model. Multimed Tools Appl 83, 39479–39502 (2024). https://doi.org/10.1007/s11042-023-16557-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16557-6

Keywords

Navigation