Skip to main content
Log in

Robust cascaded-parallel visual tracking using collaborative color and correlation filter models

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In recent years, the multi-expert collaborative tracking strategy has been introduced into visual tracking tasks and achieves impressive performance. Different from most existing multi-expert trackers that linearly fuse multiple tracking models, we propose a novel cascaded-parallel tracking algorithm (CPT) via adaptively selecting the suitable expert among multiple tracking models. And the CPT consists of cascaded and parallel tracking components. In the cascaded tracking component, we hierarchically implement two effective correlation filter models to coarse-to-fine locate the target. And in the parallel tracking component, a color tracking model is applied to locate the target to compensate for the demerit of the correlation filter models. With the proposed adaptive expert selection mechanism, the most reliable expert (i.e. tracking model) is selected for tracking in each frame. Extensive experimental results on OTB2013, OTB2015 and TempleColor128 datasets demonstrate that our proposed algorithm performs favorably against some state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1:
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data are available from the corresponding author.

References

  1. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  2. Bertinetto L, Valmadre J, Golodetz S et al (2016) Staple: complementary learners for real-time tracking. In: IEEE Conf Comput Vis Pattern Recognit (CVPR), pp. 1401–1409

  3. Bolme DS, Beveridge JR, Draper BA et al (2010) Visual object tracking using adaptive correlation filters. In: IEEE Conf Comput Vis Pattern Recognit (CVPR), pp. 2544–2550

  4. Boyd SP, Parikh N, Chu E et al (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 31(1):1–122

    Article  Google Scholar 

  5. Collins RT, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643

    Article  Google Scholar 

  6. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577

    Article  Google Scholar 

  7. Danellgan M, Hager G, Khan FS et al (2014) Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference (BMVC), pp. 1–5

  8. Danelljan M, Bhat G, Khan FS et al (2017) ECO: efficient convolution operators for tracking. In: IEEE Conf Comput Vis Pattern Recognit (CVPR), pp. 6931–6939

  9. Danelljan M, Robinson A, Khan FS et al (2016) Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Eur Conf Comput Vis (ECCV), pp. 472–488

  10. Danelljan M, Hager G, Khan FS et al (2015) Learning spatially regularized correlation filters for visual tracking. In: IEEE Int Conf Comput Vis (ICCV), pp. 4310–4318

  11. Danelljan M, Hager G, Khan FS et al (2016) Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking. In: IEEE Conf Comput Vis Pattern Recognit (CVPR), pp. 1430–1438

  12. Danelljan M, Khan FS, Felsberg M et al (2014) Adaptive color attributes for real-time visual tracking. In: IEEE Conf Comput Vis Pattern Recognit (CVPR) pp. 1090–1097

  13. Danelljan M, Hager G, Khan FS et al (2017) Discriminative scale space tracking. IEEE Trans Pattern Anal Mach Intell 39(8):1561–1575

    Article  Google Scholar 

  14. Dekel T, Oron S, Rubinstein M et al (2015) Best-buddies similarity for robust template matching. In: IEEE Conf Comput Vis Pattern Recognit (CVPR), pp. 2021–2029

  15. Duffner S, Garcia C (2013) PixelTrack: a fast adaptive algorithm for tracking non-rigid objects. In: IEEE Int Conf Comput Vis (ICCV), pp. 2480–2487

  16. Fan H, Ling H (2017) Parallel tracking and verifying: a framework for real-time and high accuracy visual tracking. In: IEEE Int Conf Comput Vis (ICCV), pp. 5487–5495

  17. Fang S, Ma Y, Li Z et al (2021) A visual tracking algorithm via confidence-based multi-feature correlation filtering. Multimed Tools Appl 80:23963–23982

    Article  Google Scholar 

  18. Felzenszwalb PF, Girshick RB, McAllester D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645

    Article  Google Scholar 

  19. Galoogahi HK, Fagg A, Lucey S (2017) Learning background-aware correlation filters for visual tracking. In: IEEE Int Conf Comput Vis (ICCV), pp. 1135–1143

  20. Godec M, Roth PM, Bischof H (2013) Hough-based tracking of non-rigid objects. Comput Vis Image Underst 117(10):1245–1256

    Article  Google Scholar 

  21. Hare S, Saffari A, Torr PHS (2011) Struck: structured output tracking with kernels. In: IEEE Int Conf Comput Visn (ICCV), pp. 263–270

  22. Henriques JF, Caseiro R, Martins P et al (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: Eur Conf Comput Vis (ECCV), pp. 702–715

  23. Henriques JF, Caseiro R, Martins P et al (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596

    Article  Google Scholar 

  24. Kuai Y, Wen G, Li D (2018) Learning adaptively windowed correlation filters for robust tracking. J Vis Commun Image Represent 51:104–111

    Article  Google Scholar 

  25. Li Y, Zhu J (2014) A scale adaptive kernel correlation filter tracker with feature integration. In: Eur Conf Comput Vis Workshops (ECCVW), pp. 254–265

  26. Li F, Tian C, Zuo W et al (2018) Learning spatial-temporal regularized correlation filters for visual tracking. In: IEEE Conf Comput Vis Pattern Recognit (CVPR), pp. 4904–4913

  27. Liang P, Blasch E, Ling H (2015) Encoding color information for visual tracking: algorithms and benchmark. IEEE Trans Image Process 24(12):5630–5644

    Article  MathSciNet  Google Scholar 

  28. Liu S, Zhang T, Cao X et al (2016) Structural correlation filter for robust visual tracking. In: IEEE Conf Comput Vis Pattern Recognit (CVPR), pp. 4312–4320

  29. Lukezic A, Vojir T, Zajc LC et al (2018) Discriminative correlation filter tracker with channel and spatial reliability. Int J Comput Vis 126(7):671–688

    Article  MathSciNet  Google Scholar 

  30. Ma C, Huang JB, Yang X et al (2015) Hierarchical convolutional features for visual tracking. In: IEEE Int Conf Comput Vis (ICCV), pp. 3074–3082

  31. Ma C, Huang JB, Yang X et al (2018) Adaptive correlation filters with long-term and short-term memory for object tracking. Int J Comput Vis 126(8):771–796

    Article  Google Scholar 

  32. Possegger H, Mauthner T, Bischof H (2015) In defense of color-based model-free tracking. In: IEEE Conf Comput Vis Pattern Recognit (CVPR), pp. 2113–2120

  33. Qi Y, Zhang S, Qin L et al (2019) Hedging deep features for visual tracking. IEEE Trans Pattern Anal Mach Intell 41(5):1116–1130

    Article  Google Scholar 

  34. Wang N, Zhou W, Tian Q et al (2018) Multi-cue correlation filters for robust visual tracking. In: IEEE Conf Comput Vis Pattern Recognit (CVPR) pp. 4844–4853

  35. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: IEEE Conf Comput Vis Pattern Recognit (CVPR), pp. 2411–2418

  36. Wu Y, Lin J, Yang MH (2015) Object tracking benchmark. IEEE Trans Pattern Anal Mach Intell 37(9):1834–1848

    Article  Google Scholar 

  37. Yan J, Zhong L, Yao Y et al (2021) Dual-template adaptive correlation filter for real-time object tracking. Multimed Tools Appl 80:2355–2376

    Article  Google Scholar 

  38. Zhang J, Ma S, Sclaroff S (2014) MEEM: robust tracking via multiple experts using entropy minimization. In: Eur Conf Comput Vis (ECCV), pp. 188–203

  39. Zhao D, Xiao L, Fu H et al (2019) Augmenting cascaded correlation filters with spatial-temporal saliency for visual tracking. Inf Sci 470:78–93

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China [grant number 61972307].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixi Liu.

Ethics declarations

Competing Interest

The authors declare that they no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Liu, G., Zhang, H. et al. Robust cascaded-parallel visual tracking using collaborative color and correlation filter models. Multimed Tools Appl 83, 33–59 (2024). https://doi.org/10.1007/s11042-023-15614-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15614-4

Keywords

Navigation