Skip to main content
Log in

A preventive and curative watermarking scheme for an industrial solution

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Watermarking for identity images printed on a plastic card support is still challenging. In this application, the scheme must be robust against a combination of geometric and signal processing attacks related to the print/scan process. In addition, the scheme must deal with all the possible aggressions that a smart card can encounter during its lifetime. This paper investigates a robust watermarking solution in the Fourier domain in the continuity of our earlier developments reported in this field. It includes both preventive and curative stages that are complementary. The solution is preventive as only a small set of selected bits presenting a small variance are concerned the watermarking process. This property increases the chances of watermark detection rate while maintaining the same level of security. The curative part consists in pre-processing the watermarked image before the detection process. It comprises two specific and accurate counterattacks: the first one deals with blurring correction under a dedicated Wiener filter and the second one focuses on color corrections. The hybrid scheme is highly efficient and has a low computational cost. The new watermarking scheme clearly outperforms competitive approaches and is compatible with industrial constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. pics.stir.ac.uk

References

  1. Abbas C, Joan C, Kevin C, Paul Mc K (2010) Digital image steganography: survey and analysis of current methods. Signal Process 90(3):727–752. https://doi.org/10.1016/j.sigpro.2009.08.010

    Article  MATH  Google Scholar 

  2. Amiri T, Moghaddam ME (2016) A new visual cryptography based watermarking scheme using dwt and sift for multiple cover images. Multimed Tools Appl 75(14):8527–8543. https://doi.org/10.1007/s11042-015-2770-7

    Article  Google Scholar 

  3. Andrew BW, Joshua AS (1997) Model of visual contrast gain control and pattern masking. J Opt Soc Am A 14(9):2379–2391. https://doi.org/10.1364/JOSAA.14.002379

    Article  Google Scholar 

  4. Barni M (2005) Effectiveness of exhaustive search and template matching against watermark desynchronization. IEEE Signal Process Lett 12(2):158–161. https://doi.org/10.1109/LSP.2004.840872

    Article  MathSciNet  Google Scholar 

  5. Barni M, Bartolini F, Piva A (2001) Improved wavelet-based watermarking through pixel-wise masking. IEEE Trans Image Process 10(5):783–791. https://doi.org/10.1109/83.918570

    Article  MATH  Google Scholar 

  6. Bas P, Chassery JM, Macq B (2002) Imag watermarking: an evolution to content based approaches. Pattern Recognit 35(3):545–561. https://doi.org/10.1016/S0031-3203(01)00059-0. Image/Video Communication

    Article  MATH  Google Scholar 

  7. Chen Z, Li L, Peng H, Liu Y, Yang Y X (2018) A novel digital watermarking based on general non-negative matrix factorization. IEEE Trans Multimedia:1–1. https://doi.org/10.1109/TMM.2018.2794985

  8. Ching-Yung L, Wu M, Bloom J, Cox IJ, Miller M, Yui ML (2001) Rotation, scale, and translation resilient watermarking for images. IEEE Trans Image Process 10(5):767–782. https://doi.org/10.1109/83.918569

    Article  MATH  Google Scholar 

  9. Chun-Hsien C, Yun-Chin L (1995) A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile. IEEE Trans Circuits Syst Video Technol 5(6):467–476. https://doi.org/10.1109/76.475889

    Article  Google Scholar 

  10. Cox IJ, Miller ML (2004) Facilitating watermark insertion by preprocessing media. EURASIP J Appl Signal Process 2004:2081–2092. https://doi.org/10.1155/S1110865704403072

    Article  Google Scholar 

  11. Cox I, Miller M, Bloom J, Fridrich J, Kalker T (2007) Digital watermarking and steganography Morgan Kaufmann

  12. Gourrame K, Douzi H, Harba R, Riad R, Ros F, Amar M, Elhajji M (2019) A zero-bit fourier image watermarking for print-cam process. Multimed Tools Appl 78(2):2621–2638. https://doi.org/10.1007/s11042-018-6302-0

    Article  Google Scholar 

  13. Huiyan Q, Dong Z, Jiying Z (2008) Human visual system based adaptive digital image watermarking. Signal Process 88(1):174–188. https://doi.org/10.1016/j.sigpro.2007.07.020

    Article  MATH  Google Scholar 

  14. Hwai-Tsu H, Jieh-Ren C, Ling-Yuan H (2016) Robust blind image watermarking by modulating the mean of partly sign-altered dct coefficients guided by human visual perception. AEU-Int J Electron Commun 70(10):1374–1381. https://doi.org/10.1016/j.aeue.2016.07.011

    Article  Google Scholar 

  15. Johannes B, Claude S, Til A (2010) Direct psf estimation using a random noise target. In: Digital photography VI, vol 7537, p 7537. https://doi.org/10.1117/12.837591

  16. Junlin O, Gouenou C, Beijing C, Huazhong S (2015) Color image watermarking based on quaternion fourier transform and improved uniform log-polar mapping. Computs & Electr Eng 46:419–432. https://doi.org/10.1016/j.compeleceng.2015.03.004

    Article  Google Scholar 

  17. Kang X, Chen Y, Zhao F, Lin G (2020) Multi-dimensional particle swarm optimization for robust blind image watermarking using intertwining logistic map and hybrid domain. Soft Comput 24(14):10561–10584

    Article  Google Scholar 

  18. Ko HJ, Huang CT, Horng G, Shiuh-Jeng W (2020) Robust and blind image watermarking in dct domain using inter-block coefficient correlation. Inf Sci 517:128–147

    Article  Google Scholar 

  19. Kumar C, Singh AK, Kumar P (2020) Improved wavelet-based image watermarking through spiht. Multimed Tools Appl 79(15):11069–11082

    Article  Google Scholar 

  20. Liu J, Xu Y, Wang S, Zhu C (2018) Complex wavelet-domain image watermarking algorithm using l1-norm function-based quantization. Circuits Syst Signal Process 37(3):1268–1286

    Article  Google Scholar 

  21. Longjiang Y, Xiamu N, Shenghe S (2005) Print-and-scan model and the watermarking countermeasure. Image Vis Comput 23(9):807–814. https://doi.org/10.1016/j.imavis.2005.05.014

    Article  Google Scholar 

  22. Miller ML, Bloom JA (2000) Computing the probability of false watermark detection. In: Information hiding, lecture notes in computer science. Springer Berlin Heidelberg, vol 1768, pp 146–158. https://doi.org/10.1007/10719724_11

  23. Pereira S, Pun T (2000) Robust template matching for affine resistant image watermarks. IEEE Trans Image Process 9(6):1123–1129. https://doi.org/10.1109/83.846253

    Article  Google Scholar 

  24. Petitcolas FAP (2000) Watermarking schemes evaluation. IEEE Signal Proc Mag 17(5):58–64. https://doi.org/10.1109/79.879339

    Article  Google Scholar 

  25. Phi Bang N, Azeddine B, Marie L (2013) Perceptual watermarking using a new just-noticeable-difference model. Signal Process: Image Commun 28 (10):1506–1525. https://doi.org/10.1016/j.image.2013.09.011

    Google Scholar 

  26. Poljicak A, Mandic L, Agic D (2011) Discrete fourier transform based watermarking method with an optimal implementation radius. J Electr Imaging 20(3):033008. https://doi.org/10.1117/1.3609010

    Article  Google Scholar 

  27. Reed A, Bradley B (2005) Automatic pre-processing after image robustness analysis. In: ICIP IEEE international conference on image processing, vol 1, pp I–957. https://doi.org/10.1109/ICIP.2005.1529911https://doi.org/10.1109/ICIP.2005.1529911

  28. Riad R, El Hajji M, Douzi H, Harba R, Ros F (2014) Evaluation of a fourier watermarking method robustness to cards durability attacks. In: Image and signal processing, lecture notes in computer science. Springer international publishing, vol 8509, pp 280–288. https://doi.org/10.1007/978-3-319-07998-1_32

  29. Riad R, Harba R, Douzi H, El-hajji M, Ros F (2014) Print-and-scan counterattacks for plastic card supports fourier watermarking. In: IEEE international symposium on industrial electronics (ISIE), pp 1036–1041. https://doi.org/10.1109/ISIE.2014.6864755

  30. Riad R, Harba R, Douzi H, Ros F, Elhajji M (2016) Robust fourier watermarking for id images on smart card plastic supports. Adv Electr Comput Eng 16(4):23–30. https://doi.org/10.4316/AECE.2016.04004

    Article  Google Scholar 

  31. Riad R, Ros F, Harba R, Douzi H, Elhajji M (2017) Enhancement of fourier image watermarking robustness. Control Eng Appl Inform 19 (4):25–33

    Google Scholar 

  32. Ros F, Borla J, Leclerc F, Harba R, Launay N (2006) An industrial watermarking process for plastic card supports. In: IEEE international conference on industrial technology, ICIT, pp 2809–2814. https://doi.org/10.1109/ICIT.2006.372635

  33. Salimi L, Haghighi A, Fathi A (2020) A novel watermarking method based on differential evolutionary algorithm and wavelet transform. Multimed Tools Appl:1–18

  34. Sharif Z, Sha’ameri AZ (2007) The application of cross correlation technique for estimating impulse response and frequency response of wireless communication channel. In: 5th student conference on research and development, pp 1–5. https://doi.org/10.1109/SCORED.2007.4451386

  35. Solachidis V, Pitas I (2001) Circularly symmetric watermark embedding in 2-d dft domain. IEEE Trans Image Process 10(11):1741–1753. https://doi.org/10.1109/83.967401

    Article  MATH  Google Scholar 

  36. Urvoy M, Goudia D, Autrusseau F (2014) Perceptual dft watermarking with improved detection and robustness to geometrical distortions. IEEE Trans Inf Forensics Secur 9(7):1108–1119. https://doi.org/10.1109/TIFS.2014.2322497

    Article  Google Scholar 

  37. Wang J, Wan W (2020) A novel attention-guided jnd model for improving robust image watermarking. Multimed Tools Appl 79(33):24057–24073

    Article  Google Scholar 

  38. Wei P, Dalel B, Mohamed K, Michel C, Gouenou C (2018) Imperceptible reversible watermarking of radiographic images based on quantum noise masking. Comput Methods Prog Biomed 160:119–128. https://doi.org/10.1016/j.cmpb.2018.03.011

    Article  Google Scholar 

  39. Wilcox M (1999) How to measure mtf and other properties of lenses. Optikos corporation, Cambridge, MA, USA, Tech, Rep, pp 4–04

  40. Xiaokang Y, Weisi L, Zhongkhang L, EePing O, Susu Y (2005) Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile. IEEE Trans Circuits Syst Video Technol 15(6):742–752. https://doi.org/10.1109/TCSVT.2005.848313

    Article  Google Scholar 

  41. Zear A, Singh A K, Kumar P (2018) A proposed secure multiple watermarking technique based on dwt, dct and svd for application in medicine. Multimed Tools Appl 77(4):4863–4882. https://doi.org/10.1007/s11042-016-3862-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Riad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A

Appendix: A

1.1 A.1 Proof 1:

In the case when the image was watermarked using a watermark W, the correlation coefficient between the extracted vector X = X0 + α × W and W can be written as:

$$ C=\frac{\mathbb{E}\left[(X_{0}+\alpha W-\mu_{X_{0}}-\alpha\mu_{W})(W-\mu_{W})\right]}{\sqrt{\mathbb{E}\left[(X_{0}+\alpha W-\mu_{X_{0}}-\alpha\mu_{W})^{2}]\mathbb{E}[(W-\mu_{W})^{2}\right]}}. $$
(14)

where \(\mu _{X_{0}}\) and μW are the mean of X0 and W respectively, and \(\mathbb {E}\) is the expectation operator. After some simple arithmetic, one obtains:

$$ C=\frac{\mathbb{E}\left[(X_{0}+\mu_{X_{0}})(W-\mu_{W})\right]+\alpha\mathbb{E}\left[(W-\mu_{W})^{2}\right]}{\sqrt{\left( \mathbb{E}\left[(X_{0}-\mu_{X_{0}})^{2}\right]+2\alpha\mathbb{E}\left[(X_{0}-\mu_{X_{0}})(W-\mu_{W})\right]+\alpha^{2}\mathbb{E}\left[(W-\mu_{W})^{2}\right]\right)\mathbb{E}\left[(W-\mu_{W})^{2}\right]}}. $$
(15)

As X0 and W are statistically independent, this this gives:

\(\mathbb {E}\left [(X_{0}-\mu _{X_{0}})(W-\mu _{W})\right ]=0\), then:

$$ C=\frac{\alpha\mathbb{E}\left[(W-\mu_{W})^{2}\right]}{(\sqrt{\mathbb{E}\left[(X_{0}-\mu_{X_{0}})^{2}\right]+\alpha^{2}\mathbb{E}\left[(W-\mu_{W})^{2}\right])\mathbb{E}\left[(W-\mu_{W})^{2}\right]}}. $$
(16)

As \({\sigma _{Y}^{2}}=\mathbb {E}[(Y-\mu _{Y})^{2}]\), the correlation coefficient can be reformulated as:

$$ C=\frac{{\alpha\sigma_{W}^{2}}}{\sqrt{\left( \sigma_{X_{0}}^{2}+\alpha^{2}{\sigma_{W}^{2}}\right){\sigma_{W}^{2}}}}=\frac{1}{\sqrt{\frac{\sigma_{X_{0}}^{2}}{\alpha^{2}{\times\sigma_{W}^{2}}}+1}}. $$
(17)

1.2 A.2 Proof 2:

In the case when the image was watermarked using a watermark W different from the one used by the decoder, the correlation coefficient between the extracted vector X = X0 + α × W and W can be written as follows:

$$ C^{*}=\frac{\mathbb{E}\left[\left( X_{0}+\alpha W^{*}-\mu_{X_{0}}-\alpha\mu_{W^{*}}\right)\left( W-\mu_{W}\right)\right]}{\sqrt{\mathbb{E}\left[(X_{0}+\alpha W^{*}-\mu_{X_{0}}-\alpha\mu_{W^{*}})^{2}\right]\mathbb{E}\left[(W-\mu_{W})^{2}\right]}}. $$
(18)

After some simple arithmetic operations, we obtain (19):

$$ C^{*}=\frac{\mathbb{E}[(X_{0}+\mu_{X_{0}})(W-\mu_{W})]+\alpha\mathbb{E}[(W^{*}-\mu_{W^{*}})(W-\mu_{W})]}{\sqrt{\left( \mathbb{E}\left[(X_{0}-\mu_{X_{0}})^{2}\right]+2\alpha\mathbb{E}\left[(X_{0}-\mu_{X_{0}})(W^{*}-\mu_{W^{*}})\right]+\alpha^{2}\mathbb{E}\left[(W^{*}-\mu_{W^{*}})^{2}\right]\right)\mathbb{E}\left[(W-\mu_{W})^{2}\right]}}. $$
(19)

As X0, W, W are statistically independent. This yields:

$$ \begin{array}{@{}rcl@{}} \mathbb{E}[(X_{0}+\mu_{X_{0}})(W-\mu_{W})]=0,\\ \mathbb{E}[(X_{0}+\mu_{X_{0}})(W^{*}-\mu_{W^{*}})]=0,\\ \mathbb{E}[(W^{*}-\mu_{W^{*}})(W-\mu_{W})]=0. \end{array} $$
(20)

Thus, the correlation coefficient is theoretically null, then C = 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riad, R., Ros, F., Gourrame, K. et al. A preventive and curative watermarking scheme for an industrial solution. Multimed Tools Appl 82, 651–679 (2023). https://doi.org/10.1007/s11042-022-13268-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13268-2

Keywords

Navigation