Skip to main content
Log in

Designing a novel lossless audio compression technique with the help of optimized graph traversal (LACOGT)

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a lossless audio encoding technique has been proposed with the help of an optimized graph traversal and its performance is further enhanced by applying basic principles of Huffman encoding. Parsing each of the sampled values of input audio and representing each individual digit by the suitable path matching in the proposed weightage graph followed by a combination of dynamic bit sequence (directed graph traversal) produces the compressed audio format. Experimental results are incorporated with statistical parameters (compression ratio, SNR, PSNR) along with other parameters (Mean Opinion Score (MOS) and Entropy) and compared with existing lossless techniques for justifying its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arnold M. (2000) Audio watermarking: features, applications and algorithms. In: 2000 IEEE International conference on multimedia and expo. ICME2000. Proceedings. Latest advances in the fast changing world of multimedia (cat. no. 00TH8532), vol 2. IEEE, pp 1013–1016

  2. Concord A. (2010) Music of Canada edited by Frederick P. miller, Agnes F. Vandome, and John Mcbrewster. Musicological Explorations 11:136–139

    Google Scholar 

  3. Farzaneh M., Toroghi R. M., Asgari M. (2018) Audio compression using graph-based transform. In: 2018 9th International symposium on telecommunications (IST). IEEE, pp 410–415

  4. Ghido F., Tabus I. (2012) Sparse modeling for lossless audio compression. IEEE Trans Audio Speech Lang Process 21(1):14–28

    Article  Google Scholar 

  5. Gunawan T. S., Zain M. K. M., Muin F. A., Kartiwi M. (2017) Investigation of lossless audio compression using ieee 1857.2 advanced audio coding. Indones. J. Electr. Eng. Comput. Sci. 6(2):422–430

    Google Scholar 

  6. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-450-principles-of-digitalcommunications-i-fall-2006/lecture-notes/book_3.pdf. Accessed: 28-10-2020

  7. https://monkeysaudio.com/index.html. Accessed: 21-03-2021

  8. http://www.wavpack.com. Accessed: 20-03-2021

  9. https://xiph.org/flac/index.html. Accessed: 29-03-2021

  10. http://www.eecs.umich.edu/courses/eecs206/archive/f02/public/lec/lect20.pdf. Accessed: 29-09-2020

  11. https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.500-13-201201-I!!PDF-E.pdf. Accessed: 30-09-2020

  12. Jiang X., Hadid A., Pang Y., Granger E., Feng X. (2019) Deep learning in object detection and recognition. Springer

  13. Kotha H. D., Tummanapally M., Upadhyay V. K. (2019) Review on lossless compression techniques. J Phys: Conf Ser 1228:012007. IOP Publishing

    Google Scholar 

  14. Kutter M., Petitcolas F. A. (1999) Fair benchmark for image watermarking systems. In: Security and watermarking of multimedia contents, vol 3657. International Society for Optics and Photonics, pp 226–239

  15. Li Z. N., Drew M. S., Liu J. (2014) Social media sharing. In: Fundamentals of multimedia. Springer, pp 617–643

  16. Michalski P., Ruszczak B., Tomaszewski M. (2018) Convolutional neural networks implementations for computer vision. In: International scientific conference BCI 2018 Opole. Springer, pp 98–110

  17. Moffat A. (2019) Huffman coding. ACM Comput Surv (CSUR) 52 (4):1–35

    Article  Google Scholar 

  18. Mohdar F. J., Al-Otaibi M. S., Aboalsamh H. A. (2011) Audio compression testing tool for multimedia applications. In: Image processing and communications challenges 3. Springer, pp 409–418

  19. Mondal U. K., Debnath A. (2020) Developing a dynamic cluster quantization based lossless audio compression (DCQLAC). Multimed Tools Appl 1–24

  20. Mondal U. K., Debnath A., Mandal J. (2020) Deep learning-based lossless audio encoder (dllae). In: Intelligent computing: image processing based applications. Springer, pp 91–101

  21. Nowak N., Zabierowski W. (2011) Methods of sound data compression–comparison of different standards (4)

  22. Prasad B., Prasanna S. (2008) Speech, audio, image and biomedical signal processing using neural networks, vol 83. Springer Science & Business Media

  23. Shannon C. E. (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  MathSciNet  Google Scholar 

  24. Streijl R. C., Winkler S., Hands D. S. (2016) Mean opinion score (mos) revisited: methods and applications, limitations and alternatives. Multimed Syst 22(2):213–227

    Article  Google Scholar 

  25. Ulacha G., Wernik C. (2019) A high efficiency multistage coder for lossless audio compression using ols+ and cdccr method. Appl Sci 9(23):5218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttam Kr. Mondal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, U.K., Debnath, A. Designing a novel lossless audio compression technique with the help of optimized graph traversal (LACOGT). Multimed Tools Appl 81, 40385–40411 (2022). https://doi.org/10.1007/s11042-022-12556-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12556-1

Keywords

Navigation