Skip to main content
Log in

Image quality assessment via multiple features

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multimedia devices are indispensable in the information society. And, image quality highly impacts user experience of multimedia equipment. Therefore, measuring image quality accurately has great application value. The existing image quality assessment (IQA) methods have demonstrated the natural sense statistics and image structural information can measure the degradation of image. However, the generalization ability of individual IQA method is limited. In this paper, we propose a novel no-reference IQA method which is based on multiple features. For each image, we first extract natural sense statistic feature, global structural feature and local structural feature, respectively. Second, we train the quality prediction model via different features, and obtain different quality prediction scores by the models. Third, the prediction scores are collected and transformed to feature vectors. Subsequently, the IQA model is trained by support vector regression, and the input variables are the obtained feature vectors and subjective scores. The experimental results on the public databases demonstrate the proposed method can accurately predict the quality of both natural image and screen content image, and the performance is competitive with prevalent methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arora M, Kumar M (2021) AutoFER: PCA and PSO based automatic facial emotion recognition. Multimed Tools Appl 80(2):3039–3049. https://doi.org/10.1007/s11042-020-09726-4

    Article  Google Scholar 

  2. Bansal M, Kumar M, Kumar M (2020) 2D object recognition techniques: state-of-the-art work. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09409-1

    Article  Google Scholar 

  3. Bansal M, Kumar M, Kumar M, Kumar K (2021) An efficient technique for object recognition using Shi-Tomasi corner detection algorithm. Soft Comput 25(6):4423–4432. doi: https://doi.org/10.1007/s00500-020-05453-y

    Article  Google Scholar 

  4. Chang C-C, Lin C-J (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2(3):Article 27. https://doi.org/10.1145/1961189.1961199

  5. Chhabra P, Garg NK, Kumar M (2020) Content-based image retrieval system using ORB and SIFT features. Neural Comput Appl 32(7):2725–2733. doi: https://doi.org/10.1007/s00521-018-3677-9

    Article  Google Scholar 

  6. Dargan S, Kumar M, Ayyagari MR, Kumar G (2020) A survey of deep learning and its applications: a new paradigm to machine learning. Arch Comput Methods Eng 27(4):1071–1092. https://doi.org/10.1007/s11831-019-09344-w

    Article  MathSciNet  Google Scholar 

  7. Ding L, Huang H, Zang Y (2017) Image quality assessment using directional anisotropy structure measurement. IEEE Trans Image Process 26(4):1799–1809. https://doi.org/10.1109/TIP.2017.2665972

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang Y, Yan J, Li L, Wu J, Lin W (2018) No reference quality assessment for screen content images with both local and global feature representation. IEEE Trans Image Process 27(4):1600–1610. https://doi.org/10.1109/TIP.2017.2781307

    Article  MathSciNet  MATH  Google Scholar 

  9. Garg D, Garg NK, Kumar M (2018) Underwater image enhancement using blending of CLAHE and percentile methodologies. Multimed Tools Appl 77(20):26545–26561. https://doi.org/10.1007/s11042-018-5878-8

    Article  Google Scholar 

  10. Ghadiyaram D, Bovik AC (2016) Massive online crowdsourced study of subjective and objective picture quality. IEEE Trans Image Process 25(1):372–387. https://doi.org/10.1109/TIP.2015.2500021

    Article  MathSciNet  MATH  Google Scholar 

  11. Gu K, Wang S, Yang H, Lin W, Zhai G, Yang X et al (2016) Saliency-guided quality assessment of screen content images. IEEE Trans Multimed 18(6):1098–1110. https://doi.org/10.1109/TMM.2016.2547343

    Article  Google Scholar 

  12. Gu K, Zhai G, Lin W, Yang X, Zhang W (2016) Learning a blind quality evaluation engine of screen content images. Neurocomputing 196:140–149. doi: https://doi.org/10.1016/j.neucom.2015.11.101

    Article  Google Scholar 

  13. Gu K, Zhou J, Qiao J, Zhai G, Lin W, Bovik AC (2017) No-reference quality assessment of screen content pictures. IEEE Trans Image Process 26(8):4005–4018. https://doi.org/10.1109/TIP.2017.2711279

    Article  MathSciNet  MATH  Google Scholar 

  14. Gu K, Qiao J, Min X, Yue G, Lin W, Thalmann D (2018) Evaluating quality of screen content images via structural variation analysis. IEEE Trans Vis Comput Graph 24(10):2689–2701. https://doi.org/10.1109/TVCG.2017.2771284

    Article  Google Scholar 

  15. Gu K, Qiao J, Lee S, Liu H, Lin W, Callet PL (2020) Multiscale natural scene statistical analysis for no-reference quality evaluation of DIBR-synthesized views. IEEE Trans Broadcast 66(1):127–139. https://doi.org/10.1109/TBC.2019.2906768

    Article  Google Scholar 

  16. Gupta S, Mohan N, Kumar M (2020) A study on source device attribution using still images. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09452-y

    Article  Google Scholar 

  17. Hu B, Li L, Wu J, Qian J (2020) Subjective and objective quality assessment for image restoration: A critical survey. Signal Process Image Commun 85:115839. https://doi.org/10.1016/j.image.2020.115839

    Article  Google Scholar 

  18. Hui J, Chaoqiang L (2008) Motion blur identification from image gradients. 2008 IEEE Conference on Computer Vision and Pattern Recognition, p 1-8

  19. Jabar F, Ascenso J, Queluz MP (2020) Objective assessment of perceived geometric distortions in viewport rendering of 360° images. IEEE J Selec Topics Signal Process 14(1):49–63. https://doi.org/10.1109/JSTSP.2019.2962970

    Article  Google Scholar 

  20. Karaali A, Jung CR (2018) Edge-based defocus blur estimation with adaptive scale selection. IEEE Trans Image Process 27(3):1126–1137. https://doi.org/10.1109/TIP.2017.2771563

    Article  MathSciNet  MATH  Google Scholar 

  21. Ko H, Lee DY, Cho S, Bovik AC (2020) Quality prediction on deep generative images. IEEE Trans Image Process 29:5964–5979. https://doi.org/10.1109/TIP.2020.2987180

    Article  Google Scholar 

  22. Kumar M, Chhabra P, Garg NK (2018) An efficient content based image retrieval system using BayesNet and K-NN. Multimed Tools Appl 77(16):21557–21570. https://doi.org/10.1007/s11042-017-5587-8

    Article  Google Scholar 

  23. Kumar M, Jindal MK, Sharma RK, Jindal SR (2020) Performance evaluation of classifiers for the recognition of offline handwritten Gurmukhi characters and numerals: a study. Artif Intell Rev 53(3):2075–2097. doi: https://doi.org/10.1007/s10462-019-09727-2

    Article  Google Scholar 

  24. Kumar M, Bansal M, Kumar M (2020) XGBoost: 2D-object recognition using shape descriptors and extreme gradient boosting classifier. International conference on Computational Methods and Data Engineering (ICMDE 2020)

  25. Kumar A, Kumar M, Kaur A (2021) Face detection in still images under occlusion and non-uniform illumination. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-10457-9

    Article  Google Scholar 

  26. Lee D, Plataniotis KN (2016) Toward a no-reference image quality assessment using statistics of perceptual color descriptors. IEEE Trans Image Process 25(8):3875–3889. https://doi.org/10.1109/TIP.2016.2579308

    Article  MathSciNet  MATH  Google Scholar 

  27. Liao X, Li K, Yin J (2017) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimed Tools Appl 76(20):20739–20753. https://doi.org/10.1007/s11042-016-3971-4

    Article  Google Scholar 

  28. Liao X, Yu Y, Li B, Li Z, Qin Z (2020) A New Payload Partition Strategy in Color Image Steganography. IEEE Trans Circuits Syst Video Technol 30(3):685–696. doi: https://doi.org/10.1109/TCSVT.2019.2896270

    Article  Google Scholar 

  29. Liao X, Yin J, Chen M, Qin Z (2020) Adaptive payload distribution in multiple images steganography based on image texture features. IEEE Trans Dependable Secur Comput 1. https://doi.org/10.1109/TDSC.2020.3004708

  30. Liu L, Wang T, Huang H (2019) Pre-attention and spatial dependency driven no-reference image quality assessment. IEEE Trans Multimed 21(9):2305–2318. https://doi.org/10.1109/TMM.2019.2900941

    Article  Google Scholar 

  31. Liu Y, Gu K, Zhang Y, Li X, Zhai G, Zhao D et al (2020) Unsupervised blind image quality evaluation via statistical measurements of structure, naturalness, and perception. IEEE Trans Circuits Syst Video Technol 30(4):929–943. https://doi.org/10.1109/TCSVT.2019.2900472

    Article  Google Scholar 

  32. Liu Y, Tang C, Zheng Z, Lin L (2020) No-reference stereoscopic image quality evaluator with segmented monocular features and perceptual binocular features. Neurocomputing 405:126–137. doi: https://doi.org/10.1016/j.neucom.2020.04.049

    Article  Google Scholar 

  33. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708. https://doi.org/10.1109/TIP.2012.2214050

    Article  MathSciNet  MATH  Google Scholar 

  34. Mittal A, Soundararajan R, Bovik AC (2013) Making a “Completely Blind” image quality analyzer. IEEE Signal Process Lett 20(3):209–212. https://doi.org/10.1109/LSP.2012.2227726

    Article  Google Scholar 

  35. Moorthy AK, Bovik AC (2010) A two-step framework for constructing blind image quality indices. IEEE Signal Process Lett 17(5):513–516. https://doi.org/10.1109/LSP.2010.2043888

    Article  Google Scholar 

  36. Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, Astola J et al (2015) Image database TID2013: Peculiarities, results and perspectives. Sig Process Image Commun 30:57–77. doi: https://doi.org/10.1016/j.image.2014.10.009

    Article  Google Scholar 

  37. Qin M, Lv X, Chen X, Wang W (2017) Hybrid NSS features for no-reference image quality assessment. IET Image Process

  38. Ruderman DL (1994) The statistics of natural images. Network 5(4):517-48. https://doi.org/10.1088/0954-898X_5_4_006

  39. Sharifi K, Leon-Garcia A (1995) Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video. IEEE Trans Circuits Syst Video Technol 5(1):52–56. doi: https://doi.org/10.1109/76.350779

    Article  Google Scholar 

  40. Sheikh HR, Sabir MF, Bovik AC (2006) A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans Image Process 15(11):3440–3451. https://doi.org/10.1109/TIP.2006.881959

    Article  Google Scholar 

  41. Sinno Z, Caramanis C, Bovik AC (2018) Towards a closed form second-order natural scene statistics model. IEEE Trans Image Process 27(7):3194–3209. https://doi.org/10.1109/TIP.2018.2817740

    Article  MathSciNet  MATH  Google Scholar 

  42. Tang L, Li L, Gu K, Sun X, Zhang J (2016) Blind quality index for camera images with natural scene statistics and patch-based sharpness assessment. J Vis Commun Image Represent 40:335–344. doi: https://doi.org/10.1016/j.jvcir.2016.07.007

    Article  Google Scholar 

  43. VQEG (2000) Final report from the video quality experts group on the validation of objective models of video quality assessment

  44. Wan Z, Gu K, Zhao D (2020) Reduced reference stereoscopic image quality assessment using sparse representation and natural scene statistics. IEEE Trans Multimed 22(8):2024–2037. https://doi.org/10.1109/TMM.2019.2950533

    Article  Google Scholar 

  45. Wang S, Gu K, Zhang X, Lin W, Zhang L, Ma S et al (2016) Subjective and objective quality assessment of compressed screen content images. IEEE J Emerg Sel Top Circuits Syst 6(4):532–543. https://doi.org/10.1109/JETCAS.2016.2598756

    Article  Google Scholar 

  46. Wu J, Zhang M, Li L, Dong W, Shi G, Lin W (2019) No-reference image quality assessment with visual pattern degradation. Inf Sci 504:487–500. doi: https://doi.org/10.1016/j.ins.2019.07.061

    Article  MathSciNet  Google Scholar 

  47. Yan B, Bare B, Tan W (2019) Naturalness-aware deep no-reference image quality assessment. IEEE Trans Multimed 21(10):2603–2615. https://doi.org/10.1109/TMM.2019.2904879

    Article  Google Scholar 

  48. Yang H, Fang Y, Lin W (2015) Perceptual quality assessment of screen content images. IEEE Trans Image Process 24(11):4408–4421. https://doi.org/10.1109/TIP.2015.2465145

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang X, Wang T, Ji G (2020) No-reference image quality assessment via structural information fluctuation. IET Image Proc 14(2):384–396. doi: https://doi.org/10.1049/iet-ipr.2019.0750

    Article  Google Scholar 

  50. Yang X, Wang T, Ji G (2020) A local structural information representation method for image quality assessment. Multimed Tools Appl 79(31):22797–22823. https://doi.org/10.1007/s11042-020-09022-1

    Article  Google Scholar 

  51. Yue G, Hou C, Gu K, Ling N, Li B (2018) Analysis of structural characteristics for quality assessment of multiply distorted images. IEEE Trans Multimed 20(10):2722–2732. https://doi.org/10.1109/TMM.2018.2807589

    Article  Google Scholar 

  52. Yue G, Hou C, Zhou T (2019) Blind quality assessment of tone-mapped images considering colorfulness, naturalness, and structure. IEEE Trans Ind Electron 66(5):3784–3793. https://doi.org/10.1109/TIE.2018.2851984

    Article  Google Scholar 

  53. Zhan Y, Zhang R, Wu Q (2017) A structural variation classification model for image quality assessment. IEEE Trans Multimed 19(8):1837–1847. https://doi.org/10.1109/TMM.2017.2689923

    Article  Google Scholar 

  54. Zhang Y, Chandler DM (2018) Opinion-unaware blind quality assessment of multiply and singly distorted images via distortion parameter estimation. IEEE Trans Image Process 27(11):5433–5448. https://doi.org/10.1109/TIP.2018.2857413

    Article  MathSciNet  Google Scholar 

  55. Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386. https://doi.org/10.1109/TIP.2011.2109730

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang L, Zhang L, Bovik AC (2015) A feature-enriched completely blind image quality evaluator. IEEE Trans Image Process 24(8):2579–2591. https://doi.org/10.1109/TIP.2015.2426416

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhou W, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. doi: https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  58. Zhou Z, Wang Y, Guo Y, Qi Y, Yu J (2020) Image quality improvement of hand-held ultrasound devices with a two-stage generative adversarial network. IEEE Trans Biomed Eng 67(1):298–311. https://doi.org/10.1109/TBME.2019.2912986

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJB510021), the National Natural Science Foundation of China (Grant No. 62101268) and the National Natural Science Foundation of China (Grant No. 41971343).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Xichen Yang. Performed the experiments: Xichen Yang. Analyzed the data: Xichen Yang. Wrote and reviewed the paper: Xichen yang, Genlin Ji, Tianshu Wang. Approved the final version of the paper: Xichen yang, Genlin Ji, Tianshu Wang.

Corresponding author

Correspondence to Xichen Yang.

Ethics declarations

The authors have declared that there are no competing interests exist.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, T. & Ji, G. Image quality assessment via multiple features. Multimed Tools Appl 81, 5459–5483 (2022). https://doi.org/10.1007/s11042-021-11788-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11788-x

Keywords

Navigation