Skip to main content
Log in

Cross-datasets facial expression recognition via distance metric learning and teacher-student model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Large-scale high-quality datasets are a particularly important condition for facial expression recognition(FER) in the era of deep learning, but most of the datasets used for FER are relatively small. A common method to address this problem is to use cross-datasets strategy. However, due to the different acquisition conditions and subjective labeling process, there are inevitable data inconsistencies and poor cross-dataset robustness between different FER datasets. Moreover, expression datasets collected in uncontrolled environments suffer from problems such as unclear expressions and low-quality face images, leading to low certainty in image annotation. This paper aims to improve the accuracy and generalization ability of expression recognition across datasets by optimizing the labels of fused large-scale datasets. Specifically, this paper adopts the similarity comparison of features, proposes a dataset label determination method based on distance metric learning and teacher-student model to improve the determinism of images. In addition, this paper provides an alternative scheme for fusion of datasets. The fusion of the source dataset and the target dataset provides the best trade-off between accuracy and generalization ability to achieve a better result for cross-dataset FER, address the problems of small dataset size and ignoring the performance of the source dataset in cross-dataset expression recognition. Experiments show that training on the fused large-scale datasets using the method proposed in this paper can achieve the state of the art results for cross-dataset expression recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barsoum E, Zhang C, Ferrer CC et al (2016) Training deep networks for facial expression recognition with crowd-sourced label distribution[C]//Proceedings of the 18th ACM International Conference on Multimodal Interaction: 279–283

  2. Bejaoui H, Ghazouani H, Barhoumi W (2019) Sparse coding-based representation of lbp difference for 3d/4d facial expression recognition[J]. Multimed Tools Appl 78(16):22773–22796

    Article  Google Scholar 

  3. Cai J, Meng Z, Khan AS et al (2018) Probabilistic attribute tree in convolutional neural networks for facial expression recognition[J]. arXiv preprint arXiv:1812.07067

  4. Chang WG, You T, Seo S et al (2019) Domain-specific batch normalization for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition: 7354–7362

  5. Chen T, Pu T, Wu H et al (2021) Cross-domain facial expression recognition: a unified evaluation benchmark and adversarial graph learning[J]. IEEE transactions on pattern analysis and machine intelligence

  6. Chen WY, Liu YC, Kira Z et al (2019) A closer look at few-shot classification[J]. arXiv preprint arXiv:1904.04232

  7. Cheng G, Yang C, Yao X et al (2018) When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs[J]. IEEE Trans Geosci Remote Sens 56(5):2811–2821

    Article  Google Scholar 

  8. De Vazelhes W, Carey CJ, Tang Y et al (2020) metric-learn: Metric learning algorithms in python[J]. J Mach Learn Res 21(138):1–6

    MATH  Google Scholar 

  9. Dhall A, Goecke R, Lucey S et al (2011) Static facial expressions in tough conditions: Data, evaluation protocol and benchmark[C]//1st IEEE International Workshop on Benchmarking Facial Image Analysis Technologies BeFIT, ICCV2011

  10. Douillard A,Valle E,Ollion C et al. Insights from the Future for Continual Learning[J]. arXiv preprint arXiv:2006.13748,2020

  11. Fallahzadeh M R, Farokhi F, Harimi A et al (2021) Facial expression recognition based on image gradient and deep convolutional neural network[J]. Journal of AI and Data Mining 9(2):259–268

  12. Farzaneh AH, Qi X (2021) Facial expression recognition in the wild via deep attentive center loss[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision: 2402–2411

  13. Gao BB, Xing C, Xie CW et al (2017) Deep label distribution learning with label ambiguity[J]. IEEE Trans Image Process 26(6):2825–2838

    Article  MathSciNet  Google Scholar 

  14. Hady MFA, Schwenker F (2013) Semi-supervised learning[M]//Handbook on Neural Information Processing. Springer, Berlin, pp 215–239

    Google Scholar 

  15. Hosseini S, Shabani MA, Cho NI (2019) Distill-2MD-MTL: Data Distillation based on Multi-Dataset Multi-Domain Multi-Task Frame Work to Solve Face Related Tasksks, Multi Task Learning, Semi-Supervised Learning[J]. arXiv preprint arXiv:1907.03402

  16. Hu X, Ma F, Liu C et al (2020) Semi-supervised relation extraction via incremental meta self-training[J]. Update 9:8

    Google Scholar 

  17. Iscen A, Tolias G, Avrithis Y et al (2019) Label propagation for deep semi-supervised learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition: 5070–5079

  18. Ji Y, Hu Y, Yang Y et al (2019) Cross-domain facial expression recognition via an intra-category common feature and inter-category distinction feature fusion network[J]. Neurocomputing 333:231–239

    Article  Google Scholar 

  19. Lakshmi D, Ponnusamy R (2021) Facial emotion recognition using modified HOG and LBP features with deep stacked autoencoders[J]. Microprocess Microsyst 82:103834

    Article  Google Scholar 

  20. Lee CY, Batra T, Baig MH et al (2019) Sliced wasserstein discrepancy for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition: 10285–10295

  21. Li S, Deng W (2018) Deep emotion transfer network for cross-database facial expression recognition[C]//2018 24th International Conference on Pattern Recognition (ICPR). IEEE 3092–3099

  22. Li S, Deng W (2018) Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recognition[J]. IEEE Trans Image Process 28(1):356–370

    Article  MathSciNet  Google Scholar 

  23. Li S, Deng W (2020) A deeper look at facial expression dataset bias[J]. IEEE Trans Affect Comput

  24. Li S, Deng W (2020) Deep facial expression recognition: a survey[J]. IEEE Trans Affect Comput

  25. Liu D, Ouyang X, Xu S et al (2020) SAANet: Siamese action-units attention network for improving dynamic facial expression recognition[J]. Neurocomputing 413:145–157

    Article  Google Scholar 

  26. Liu P, Wei Y, Meng Z et al (2020) Omni-supervised facial expression recognition: A simple baseline[J]. arXiv preprint arXiv:2005.08551

  27. Liu X, Kumar BVKV, Jia P et al (2019) Hard negative generation for identity-disentangled facial expression recognition[J]. Pattern Recogn 88:1–12

    Article  Google Scholar 

  28. Liu X, Vijaya Kumar BVK, You J et al (2017) Adaptive deep metric learning for identity-aware facial expression recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops: 20–29

  29. Long M, Cao Z, Wang J et al (2017) Conditional adversarial domain adaptation[J]. arXiv preprint arXiv:1705.10667

  30. Lucey P, Cohn JF, Kanade T et al (2010) The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression[C]//2010 ieee computer society conference on computer vision and pattern recognition-workshops. IEEE 94–101

  31. Mei K, Zhu C, Zou J et al (2020) Instance adaptive self-training for unsupervised domain adaptation[J]. arXiv preprint arXiv:2008.12197

  32. Ma H, Celik T (2019) FER‐Net: facial expression recognition using densely connected convolutional network[J]. Electron Lett 55(4):184–186

  33. Radosavovic I, Dollár P, Girshick R et al (2018) Data distillation: Towards omni-supervised learning[C]//Proceedings of the IEEE conference on computer vision and pattern recognition: 4119–4128

  34. Rahul M, Kohli N, Agarwal R et al (2019) Facial expression recognition using geometric features and modified hidden Markov model[J]. Int J Grid Util Comput 10(5):488–496

    Article  Google Scholar 

  35. Rizve MN, Duarte K, Rawat YS et al (2021) In defense of pseudo-labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning[J]. arXiv preprint arXiv:2101.06329

  36. Sadeghi H, Raie AA (2019) Histogram distance metric learning for facial expression recognition[J]. J Vis Commun Image Represent 62:152–165

    Article  Google Scholar 

  37. Shao J, Qian Y (2019) Three convolutional neural network models for facial expression recognition in the wild[J]. Neurocomputing 355:82–92

    Article  Google Scholar 

  38. She J, Hu Y, Shi H et al (2021) Dive into Ambiguity: Latent Distribution Mining and Pairwise Uncertainty Estimation for Facial Expression Recognition[J]. arXiv preprint arXiv:2104.00232

  39. Shi S, Si H, Liu J et al (2018) Facial expression recognition based on Gabor features of salient patches and ACI-LBP[J]. J Intell Fuzzy Syst 34(4):2551–2561

    Article  Google Scholar 

  40. Shih FY, Chuang CF, Wang PSP (2008) Performance comparisons of facial expression recognition in JAFFE database[J]. Int J Pattern Recognit Artif Intell 22(03):445–459

    Article  Google Scholar 

  41. Suárez JL, García S, Herrera F (2021) A tutorial on distance metric learning: Mathematical foundations, algorithms, experimental analysis, prospects and challenges[J]. Neurocomputing 425:300–322

    Article  Google Scholar 

  42. Sung F, Yang Y, Zhang L et al (2018) Learning to compare: Relation network for few-shot learning[C]//Proceedings of the IEEE conference on computer vision and pattern recognition: 1199–1208

  43. Tannugi DC, Britto Jr AS, Koerich AL (2019) Memory Integrity of CNNs for Cross-Dataset Facial Expression Recognition[J]. arXiv preprint arXiv:1905.12082

  44. Taori R, Dave A, Shankar V, et al (2020) Measuring robustness to natural distribution shifts in image classification[J]

  45. Vu TH, Jain H, Bucher M et al (2019) Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition: 2517–2526

  46. Wang K, Peng X, Yang J et al (2020) Region attention networks for pose and occlusion robust facial expression recognition[J]. IEEE Trans Image Process 29:4057–4069

    Article  Google Scholar 

  47. Wang K, Peng X, Yang J et al (2020) Suppressing Uncertainties for Large-Scale Facial Expression Recognition[J]. arXiv preprint arXiv:2002.10392

  48. Wang Y, Li Y, Song Y et al (2020) The influence of the activation function in a convolution neural network model of facial expression recognition[J]. Appl Sci 10(5):1897

    Article  Google Scholar 

  49. Wu H, Prasad S (2017) Semi-supervised deep learning using pseudo labels for hyperspectral image classification[J]. IEEE Trans Image Process 27(3):1259–1270

    Article  MathSciNet  Google Scholar 

  50. Wu R, Zhang G, Lu S et al (2020) Cascade ef-gan: Progressive facial expression editing with local focuses[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition: 5021–5030

  51. Xu R, Li G, Yang J et al (2019) Larger norm more transferable: An adaptive feature norm approach for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision: 1426–1435

  52. Yalniz IZ, Jégou H, Chen K et al (2019) Billion-scale semi-supervised learning for image classification[J]. arXiv preprint arXiv:1905.00546

  53. Yasarla R, Perazzi F, Patel VM (2020) Deblurring face images using uncertainty guided multi-stream semantic networks[J]. IEEE Trans Image Process 29:6251–6263

    Article  Google Scholar 

  54. Zhou L, Wang H, Lin S et al (2020) Face recognition based on local binary pattern and improved Pairwise-constrained Multiple Metric Learning[J]. Multimed Tools Appl 79(1):675–691

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Development Project of Ship Situational Intelligent Awareness System, China under Grant MC-201920-X01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Yuan.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, H., Yuan, F., Tian, Y. et al. Cross-datasets facial expression recognition via distance metric learning and teacher-student model. Multimed Tools Appl 81, 5621–5643 (2022). https://doi.org/10.1007/s11042-021-11765-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11765-4

Keywords

Navigation