Skip to main content
Log in

Hybrid deep convolutional neural models for iris image recognition

  • 1180: Cybersecurity, Intelligent Multimedia Systems for Threat Detection and Data Protection
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper briefly explains about the application of deep learning-based methods for biometric applications. This work attempts to solve the problem of limited availability of datasets which affects accuracy of the classifiers. This paper explores the iris recognition problem using a basic convolutional neural network model and hybrid deep learning models. The augmentations used to populate the dataset and their outputs are also shown in this study. An illustration of learned weights and the outputs of intermediary stages the network like convolution layer, normalization layer and activation layer are given to help better understanding of the process. The performance of the network is studied using accuracy and receiver operating characteristic curve. The empirical results of our experiments show that Adam based optimization is good at learning iris features using deep learning. Moreover, the hybrid deep learning network with SVM performs better in iris recognition with a maximum accuracy of 97.8%. These experiments have also revealed that not all hybrid networks will give better performance as the hybrid deep learning network with KNN has given lesser accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Al-Waisy AS, Qahwaji R, Ipson S, Al-Fahdawi S, Nagem TAM (2018) A multi-biometric iris recognition system based on a deep learning approach. Pattern Anal Applic 21(3):783–802. https://doi.org/10.1007/s10044-017-0656-1

    Article  MathSciNet  Google Scholar 

  2. Baqar M, Ghani A, Aftab A, Arbab S, Yasin S (2016) Deep belief networks for iris recognition based on contour detection. Int Conf Open Source Syst Technol 6

  3. Benalcazar DP, Zambrano JE, Bastias D, Perez CA, Bowyer KW (2020) A 3D iris scanner from a single image using convolutional neural networks. IEEE Access 8:98584–98599. https://doi.org/10.1109/ACCESS.2020.2996563

    Article  Google Scholar 

  4. Chen Y, Wu C, Wang Y (2020) T-center: a novel feature extraction approach towards large-scale iris recognition. IEEE Access 8:32365–32375. https://doi.org/10.1109/ACCESS.2020.2973433

    Article  Google Scholar 

  5. Ciocoiu B, Cleju N (2020) Off-person ECG biometrics using spatial representations and convolutional neural networks. IEEE Access 8:218966–218981. https://doi.org/10.1109/ACCESS.2020.3042547

    Article  Google Scholar 

  6. Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. IEE Trans Pattern Anal Mach Intell 15(11):1148–1161. https://doi.org/10.1109/34.244676

    Article  Google Scholar 

  7. Hu Y, Sirlantzis K, Howells G (2017) Optimal generation of iris codes for iris recognition. IEEE Trans Inform Forensic Secur 12(1):157–171. https://doi.org/10.1109/TIFS.2016.2606083

    Article  Google Scholar 

  8. Hu Q, Yin S, Ni H, Huang Y (2020) An end to end deep neural network for iris recognition. Procedia Computer Science 174:505–517. https://doi.org/10.1016/j.procs.2020.06.118

    Article  Google Scholar 

  9. IIT Delhi Iris Database version 1.0, UpToDate. http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.htm. Accessed 10 July 2021

  10. Kavukcuoglu K, Sermanet P, Boureau Y, Gregor K, Mathieu M, Cun YL (2010) Learning convolutional feature hierarchies for visual recognition. In: NIPS’10: proceedings of the 23rd international conference on neural information processing systems, vol 1, pp 1090–1098. https://doi.org/10.5555/2997189.2997311

  11. Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. arXiv:1412.6980

  12. LeCun Y, Boytou L, Bengio Y, Haffner P (1998) Gradient based learning applied to document recognition. Proc IEEE 86(11):2278–2324. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  13. Lee MB, Kim YH, Park KR (2019) Conditional generative adversarial network- based data augmentation for enhancement of iris recognition accuracy. IEEE Access 7:122134–122152. https://doi.org/10.1109/ACCESS.2019.2937809

    Article  Google Scholar 

  14. Liu N, Zhang M, Li H, Sun Z, Tan T (2016) DeepIris: learning pairwise filter bank for heterogeneous iris verification. Pattern Recogn Lett 82:154–161. https://doi.org/10.1016/j.patrec.2015.09.016

    Article  Google Scholar 

  15. Liu X, Bai Y, Luo Y, Yang Z, Liu Y (2019) Iris recognition in visible spectrum based on multi-layer analogous convolution and collaborative representation. Pattern Recogn Lett 117:66–73. https://doi.org/10.1016/j.patrec.2018.12.003

    Article  Google Scholar 

  16. Liu M, Zhou Z, Shang P, Xu D (2020) Fuzzified image enhancement for deep learning in iris recognition. IEEE Trans Fuzzy Syst 28(1):92–99. https://doi.org/10.1109/TFUZZ.2019.2912576

    Article  Google Scholar 

  17. Maiorana E (2020) Deep learning for EEG-based biometric recognition. Neurocomputing 410:374–386. https://doi.org/10.1016/j.neucom.2020.06.009

    Article  Google Scholar 

  18. Malik J, Elhayek A, Guha S, Ahmed S, Gillani A, Stricker D (2020) DeepAirSig: end-to-end deep learning based in-air signature verification. IEEE Access 8:195832–195843. https://doi.org/10.1109/ACCESS.2020.3033848

    Article  Google Scholar 

  19. Marra F, Poggi G, Sansone C, Verdoliva L (2018) A deep learning approach for iris sensor model identification. Pattern Recogn Lett 113:46–53. https://doi.org/10.1016/j.patrec.2017.04.010

    Article  Google Scholar 

  20. Menotti D, Chiachia G, Pinto A, Robson Schwartz W, Pedrini H, Xavier Falcao A, Rocha A (2015) Deep representations for iris, face, and fingerprint spoofing detection. IEEE Trans Inform Forensic Secur 10(4):864–879. https://doi.org/10.1109/TIFS.2015.2398817

    Article  Google Scholar 

  21. Minaee S, Abdolrashidiy A, Wang Y (2016) An experimental study of deep convolutional features for iris recognition. In: IEEE signal processing in medicine and biology symposium (SPMB), pp 1–6. IEEE, Philadelphia. https://doi.org/10.1109/SPMB.2016.7846859

  22. Minaee S, Abdolrashidi A (2019) DeepIris: iris recognition using a deep learning approach. arXiv:1907.09380

  23. Reddy N, Rattani A, Derakhshani R (2020) Generalizable deep features for ocular biometrics. Image Vis Comput 103:103996. https://doi.org/10.1016/j.imavis.2020.103996

    Article  Google Scholar 

  24. Nguyen K, Fookes C, Ross A, Sridharan S (2018) Iris recognition with off-the-shelf CNN features: a deep learning perspective. IEEE Access 6:18848–18855. https://doi.org/10.1109/ACCESS.2017.2784352

    Article  Google Scholar 

  25. Nguyen K, Fookes C, Sridharan S (2020) Constrained design of deep iris networks. IEEE Trans Image Process 29:7166–7175. https://doi.org/10.1109/TIP.2020.2999211

    Article  Google Scholar 

  26. Oktiana M, Saddami K, Arnia F, Away Y, Hirai K, Horiuchi T, Munadi K (2019) Advances in cross-spectral iris recognition using integrated gradientface-based normalization. IEEE Access 7:130484–130494. https://doi.org/10.1109/ACCESS.2019.2939326

    Article  Google Scholar 

  27. Oktiana M, Horiuchi T, Hirai K, Saddami K, Arnia F, Away Y, Munadi K (2020) Cross-spectral iris recognition using phase-based matching and homomorphic filtering. Heliyon 6(2):e03407. https://doi.org/10.1016/j.heliyon.2020.e03407

    Article  Google Scholar 

  28. Oyedotun O, Khashman A (2017) Iris nevus diagnosis: convolutional neural network and deep belief network. Turk J Electr Eng Comput Sci 2017(25):1106–1115. https://doi.org/10.3906/elk-1507-190

    Article  Google Scholar 

  29. Pillai JK, Puertas M, Chellappa R (2014) Cross-sensor iris recognition through kernel learning. IEEE Trans Pattern Anal Mach Intell 36(1):73–85. https://doi.org/10.1109/TPAMI.2013.98

    Article  Google Scholar 

  30. Qian N (1999) On the momentum term in gradient descent learning algorithms. Neural Netw 12(1):145–151. https://doi.org/10.1016/S0893-6080(98)00116-6

    Article  Google Scholar 

  31. Raja KB, Raghavendra R, Venkatesh S, Busch C (2017) Multi-patch deep sparse histograms for iris recognition in visible spectrum using collaborative subspace for robust verification. Pattern Recogn Lett 91:27–36. https://doi.org/10.1016/j.patrec.2016.12.025

    Article  Google Scholar 

  32. Rakvic R, Broussard R, Ngo H (2016) Energy efficient iris recognition with graphics processing units. IEEE Access 4:2831–2839. https://doi.org/10.1109/ACCESS.2016.2571747

    Article  Google Scholar 

  33. Ribeiro E, Uhl A, Alonso-Fernandez F (2019) Iris super-resolution using CNNS: is photo-realism important to iris recognition? IET Biometrics 8(1):69–78. https://doi.org/10.1049/iet-bmt.2018.5146

    Article  Google Scholar 

  34. Srivastva R, Singh A, Singh YN (2021) PlexNet: a fast and robust ECG biometric system for human recognition. Inf Sci 2021(558):208–228. https://doi.org/10.1016/j.ins.2021.01.001

    Article  Google Scholar 

  35. Sudhakar T, Gavrilova M (2020) Cancelable biometrics using deep learning as a cloud service. IEEE Access 8:112932–112943. https://doi.org/10.1109/ACCESS.2020.3003869

    Article  Google Scholar 

  36. Umer S, Sardar A, Dhara BC, Rout RK, Pandey HM (2020) Person identification using fusion of iris and periocular deep features. Neural Netw 122:407–419. https://doi.org/10.1016/j.neunet.2019.11.009

    Article  Google Scholar 

  37. Wang K, Kumar A (2019) Cross-spectral iris recognition using CNN and supervised discrete hashing. Pattern Recogn 86:85–98. https://doi.org/10.1016/j.patcog.2018.08.010

    Article  Google Scholar 

  38. Wang C, Muhammad J, Wang Y, He Z, Sun Z (2020) Towards complete and accurate iris segmentation using deep multi-task attention network for non-cooperative iris recognition. IEEE Trans Inform Forensic Secur 15:2944–2959. https://doi.org/10.1109/TIFS.2020.2980791

    Article  Google Scholar 

  39. Zhao Z, Kumar A (2019) A deep learning based unified framework to detect, segment and recognize irises using spatially corresponding features. Pattern Recogn 93:546–557. https://doi.org/10.1016/j.patcog.2019.04.010

    Article  Google Scholar 

  40. Zhao T, Liu Y, Huo G, Zhu X (2019) A deep learning iris recognition method based on capsule network architecture. IEEE Access 7:49691–49701. https://doi.org/10.1109/ACCESS.2019.2911056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jude Hemanth.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winston, J.J., Hemanth, D.J., Angelopoulou, A. et al. Hybrid deep convolutional neural models for iris image recognition. Multimed Tools Appl 81, 9481–9503 (2022). https://doi.org/10.1007/s11042-021-11482-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11482-y

Keywords

Navigation