Skip to main content
Log in

A low complexity hyperspectral image compression through 3D set partitioned embedded zero block coding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Memory management of the hyperspectral image sensor is a challenging issue. The existing hyperspectral image compression schemes play a dominant role in minimizing the cost of storage equipment and bandwidth for data transmission for resource constraints onboard hyperspectral image sensors. Traditionally many transform-based set partition hyperspectral image compression algorithms are proposed, but these compression schemes use the data-dependent link list to keep track of the significant or insignificant coefficients or block cube sets, and the size of the lists increases swiftly with the encoding rate. The data-dependent list management and multiple memory read or write operations slow down the compression scheme. Many attempts had been made to address the memory issue through the replacement of the dynamic lists by the static fixed size state tables. The memory required for the state table depends upon the dimension of the hyperspectral image and at the low bit rates, it requires a lot of memory. This paper presents the novel hyperspectral image compression scheme for the hyperspectral image sensor that eliminates the linked list and state table. The obtained experimental results show that the proposed compression scheme outperforms state of the art transform hyperspectral image compression schemes in terms of coding memory and computation complexity while maintaining the coding efficiency. Due to the low complex nature, the proposed scheme saves the operation time and energy for the coding operation. The proposed compression scheme is a suitable candidate for the lossy data transmission and for the low memory hyperspectral sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Álvarez-Cortés S, Amrani N, Serra-Sagristà J (2018) Low complexity regression wavelet analysis variants for hyperspectral data lossless compression. Int J Remote Sens 39(7):1971–2000. https://doi.org/10.1080/01431161.2017.1375617

    Article  Google Scholar 

  2. Anand R, Veni S, Aravinth J (2017) Big data challenges in airborne hyperspectral image for urban landuse classification. In: 2017 international conference on advances in computing, communications and informatics (ICACCI), pp 1808–1814. https://doi.org/10.1109/ICACCI.2017.8126107.

  3. Arrigoni S, Turra G, Signoroni A (2017) Hyperspectral image analysis for rapid and accurate discrimination of bacterial infections: a benchmark study. Comput Biol Med 88:60–71. https://doi.org/10.1016/j.compbiomed.2017.06.018

    Article  Google Scholar 

  4. Bajpai S, Singh HV, Kidwai NR (2017) Feature extraction & classification of hyperspectral images using singular spectrum analysis & multinomial logistic regression classifiers. In: IEEE international conference on multimedia, signal processing and communication technologies (IMPACT) Aligarh, India, pp 97–100. https://doi.org/10.1109/MSPCT.2017.8363982

  5. Bajpai S, Kidwai NR, Singh HV (2019) 3D wavelet block tree coding for hyperspectral images. Int J Innov Technol Explor Eng 8(6C):64–68

    Google Scholar 

  6. Bajpai S, Kidwai NR, Singh HV, Singh AK (2019) Low memory block tree coding for hyperspectral images. Multimed Tools Appl 78(19):27193–27209. https://doi.org/10.1007/s11042-019-07797-6

    Article  Google Scholar 

  7. Bhardwaj R (2018) Enhanced encrypted reversible data hiding algorithm with minimum distortion through homomorphic encryption. J Electron Imaging 27(2):023017. https://doi.org/10.1117/1.JEI.27.2.023017

    Article  Google Scholar 

  8. Cheng KJ, Dill J (2013) Lossless to lossy compression for hyperspectral imagery based on wavelet and integer KLT transforms with 3D binary EZW. ISPIE defense, security, and sensing, vol 8743, Baltimore, Maryland, United States. https://doi.org/10.1117/12.2016200

  9. Choi I, Jeon DS, Nam G, Gutierrez D, Kim MH (2017) High-quality hyperspectral reconstruction using a spectral prior. ACM Trans Graph (TOG) 36(6):1–13. https://doi.org/10.1145/3130800.3130810

    Article  Google Scholar 

  10. Choi Y, El-Khamy M, Lee J (2019) Variable rate deep image compression with a conditional autoencoder. In Proceedings of the IEEE international conference on computer vision, pp 3146–3154

  11. Christophe E, Mailhes C, Duhamel P (2008) Hyperspectral image compression: adapting SPIHT and EZW to anisotropic 3-D wavelet coding. IEEE Trans Image Process 17(12):2334–2346. https://doi.org/10.1109/TIP.2008.2005824

    Article  MathSciNet  MATH  Google Scholar 

  12. Chutia D, Bhattacharyya DK, Sarma KK, Kalita R, Sudhakar S (2016) Hyperspectral remote sensing classifications: a perspective survey. Trans GIS 20(4):463–490. https://doi.org/10.1111/tgis.12164

    Article  Google Scholar 

  13. Datta A, Ghosh S, Ghosh A (2017) Supervised feature extraction of hyperspectral images using partitioned maximum margin criterion. IEEE Geosci Remote Sens Lett 14(1):82–86. https://doi.org/10.1109/LGRS.2016.2628078

    Article  Google Scholar 

  14. Datta A, Ghosh S, Ghosh A (2019) Hyperspectral remote sensing images and supervised feature extraction. In: Cloud computing for geospatial big data analytics, vol 49. Springer, Cham, pp 265–289. https://doi.org/10.1007/978-3-030-03359-0_13

  15. Dumke I, Nornes SM, Purser A, Marcon Y, Ludvigsen M, Ellefmo SL, Johnsen G, Søreide F (2018) First hyperspectral imaging survey of the deep seafloor: high-resolution mapping of manganese nodules. Remote Sens Environ 209:19–30. https://doi.org/10.1016/j.rse.2018.02.024

    Article  Google Scholar 

  16. Dusselaar R, Paul M (2017) Hyperspectral image compression approaches: opportunities, challenges, and future directions: discussion. J Opt Soc Am A 34(12):2170–2180. https://doi.org/10.1364/JOSAA.34.002170

    Article  Google Scholar 

  17. ElMasry G, Gou P, Al-Rejaie S (2021) Effectiveness of specularity removal from hyperspectral images on the quality of spectral signatures of food products. J Food Eng 289:110148. https://doi.org/10.1016/j.jfoodeng.2020.110148

    Article  Google Scholar 

  18. Foster DH, Amano K (2019) Hyperspectral imaging in color vision research: tutorial. J Opt Soc Am A 36(4):606–627. https://doi.org/10.1364/JOSAA.36.000606

    Article  Google Scholar 

  19. Fowler JE, Rucker JT (2007) Three-dimensional wavelet-based compression of hyperspectral imagery. In: Hyperspectral data exploitation: theory and applications. Springer, pp 379–407. https://doi.org/10.1007/0-387-28600-4_10

  20. Goetz AF (2009) Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sens Environ 113(1):S5–S16. https://doi.org/10.1016/j.rse.2007.12.014

    Article  Google Scholar 

  21. Govil H, Tripathi MK, Diwan P (2020) Comparative evaluation of AVIRIS-NG and hyperion hyperspectral image for talc mineral identification. In: Data management, analytics and innovation. Springer, Singapore, pp 95–101. https://doi.org/10.1007/978-981-13-9364-8_7

  22. Guilloteau C, Oberlin T, Berné O, Habart É, Dobigeon N (2020) Simulated JWST data sets for multispectral and hyperspectral image fusion. Astron J 160(1):28. https://doi.org/10.3847/1538-3881/ab9301

    Article  Google Scholar 

  23. Gunasheela KS, Prasantha HS (2019) Compressive sensing approach to satellite hyperspectral image compression. Inf Commun Technol Intell Syst. https://doi.org/10.1007/978-981-13-1742-2_49

    Article  Google Scholar 

  24. Hou Y, Liu G (2007) 3D set partitioned embedded zero block coding algorithm for hyperspectral image compression. International symposium on multispectral image processing and pattern recognition, vol 6790, 2007, Wuhan, China. https://doi.org/10.1117/12.750975

  25. Huang B, Huang HL, Chen H, Ahuja A, Baggett K, Schmit TJ, Heymann RW (2004) Data compression studies for NOAA hyperspectral environmental suite (HES) using 3D integer wavelet transforms with 3D set partitioning in hierarchical trees. In: Image and signal processing for remote sensing IX, vol 5238, Barcelona, Spain, pp 255–266. https://doi.org/10.1117/12.511437

  26. Jiang Z, Pan WD, Shen H (2020) Spatially and spectrally concatenated neural networks for efficient lossless compression of hyperspectral imagery. J Imaging 6(6):38. https://doi.org/10.3390/jimaging6060038

    Article  Google Scholar 

  27. Kidwai NR, Khan E, Reisslein M (2016) ZM-SPECK: a fast and memoryless image coder for multimedia sensor networks. IEEE Sens J 16(8):2575–2587. https://doi.org/10.1109/JSEN.2016.2519600

    Article  Google Scholar 

  28. Kranjčić N, Medak D, Župan R, Rezo M (2019) Support vector machine accuracy assessment for extracting green urban areas in towns. Remote Sens 11(6):655. https://doi.org/10.3390/rs11060655

    Article  Google Scholar 

  29. Kumar S, Chaudhuri S, Banerjee B, Ali F (2018) Onboard hyperspectral image compression using compressed sensing and deep learning. In: Proceedings of the 2018 IEEE European conference on computer vision (ECCV), Munich, Germany, pp 1–13

  30. Kumar V, Mohan A, Agarwal S, Siddiqui A (2019) Evaluating the close range hyperspectral data for feature identification and mapping. J Indian Soc Remote Sens 47(3):447–454. https://doi.org/10.1007/s12524-018-0889-5

    Article  Google Scholar 

  31. Kumaresan PR, Saravanavel J, Palanivel K (2020) Lithological mapping of Eratosthenes crater region using Moon Mineralogy Mapper of Chandrayaan-1. Planet Space Sci 182:104817. https://doi.org/10.1016/j.pss.2019.104817

    Article  Google Scholar 

  32. Langevin Y, Forni O (2000) Image and spectral image compression for four experiments on the ROSETTA and Mars Express missions of ESA. In: International symposium on optical science and technology, vol 4115, 2000, San Diego, CA, United States, pp 364–374. https://doi.org/10.1117/12.411561

  33. Lee HS, Younan NH, King RL (2002) Hyperspectral image cube compression combining JPEG-2000 and spectral decorrelation. In: IEEE international geoscience and remote sensing symposium 2002, vol 6, pp 3317–3319. https://doi.org/10.1109/IGARSS.2002.1027168

  34. Li R, Pan Z, Wang Y (2019) The linear prediction vector quantization for hyperspectral image compression. Multimed Tools Appl 78(9):11701–11718. https://doi.org/10.1007/s11042-018-6724-8

    Article  Google Scholar 

  35. Lim S, Sohn K, Lee C (2001) Compression for hyperspectral images using three dimensional wavelet transform. Scanning the present and resolving the future. In: Proceedings IEEE international geoscience and remote sensing symposium (Cat. No. 01CH37217), Sydney, NSW, Australia, Australia, pp 109–111. https://doi.org/10.1109/IGARSS.2001.976072.

  36. Liu H, Zhang Y, Zhang H, Fan C, Kwong S, Kuo C-CJ, Fan X (2019) Deep learning-based picture-wise just noticeable distortion prediction model for image compression. IEEE Trans Image Process 29:641–656. https://doi.org/10.1109/TIP.2019.2933743

    Article  MathSciNet  Google Scholar 

  37. Luo Y, Qin J, Xiang X, Tan Y, Liu Q, Xiang L (2020) Coverless real-time image information hiding based on image block matching and dense convolutional network. J Real-Time Image Proc 17(1):125–135. https://doi.org/10.1007/s11554-019-00917-3

    Article  Google Scholar 

  38. Lyons P, Suen D, Galusha A, Zare A, Keller J (2018) Comparison of prescreening algorithms for target detection in synthetic aperture sonar imagery. In: Detection and sensing of mines, explosive objects, and obscured targets XXIII, Proceedings, vol 10628. https://doi.org/10.1117/12.2305175

  39. Malegori C, Alladio E, Oliveri P, Manis C, Vincenti M, Garofano P, Barni F, Berti A (2020) Identification of invisible biological traces in forensic evidences by hyperspectral NIR imaging combined with chemometrics. Talanta 215:120911. https://doi.org/10.1016/j.talanta.2020.120911

    Article  Google Scholar 

  40. Mei S, Yuan X, Ji J, Zhang Y, Wan S, Du Q (2017) Hyperspectral image spatial super-resolution via 3D full convolutional neural network. Remote Sens 9(11):1139–1160. https://doi.org/10.3390/rs9111139

    Article  Google Scholar 

  41. Mishra MK, Gupta A, John J, Shukla BP, Dennison P, Srivastava SS, Kaushik NK, Misra A, Dhar D (2019) Retrieval of atmospheric parameters and data-processing algorithms for AVIRIS-NG Indian campaign data. Curr Sci 116(7):1089–1100. https://doi.org/10.18520/cs/v116/i7/1089-1100

    Article  Google Scholar 

  42. Miyoshi GT, Imai NN, Tommaselli AMG, Honkavaara E, Näsi R, Moriya ÉAS (2018) Radiometric block adjustment of hyperspectral image blocks in the Brazilian environment. Int J Remote Sens 39(15–16):4910–4930. https://doi.org/10.1080/01431161.2018.1425570

    Article  Google Scholar 

  43. Mohan BK, Porwal A (2015) Hyperspectral image processing and analysis. Curr Sci 108(5):833–841

    Google Scholar 

  44. Nagendran R, Vasuki A (2020) Hyperspectral image compression using hybrid transform with different wavelet-based transform coding. Int J Wavelets Multiresolut Inf Process 18(01):1941008. https://doi.org/10.1142/S021969131941008X

    Article  MathSciNet  Google Scholar 

  45. Nageswaran K, Nagarajan K, Bandiya R (2019) A novel algorithm for hyperspectral image denoising in medical application. J Med Syst 43(9):291. https://doi.org/10.1007/s10916-019-1403-5

    Article  Google Scholar 

  46. Ngadiran R, Boussakta S, Sharif B, Bouridane A (2010) Efficient implementation of 3D listless SPECK. IEEE international conference on computer and communication engineering, pp 1–4. https://doi.org/10.1109/ICCCE.2010.5556843

  47. Nguyen Han V, Ulfarsson MO, Sveinsson JR (2020) Hyperspectral image denoising using SURE-based unsupervised convolutional neural networks. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2020.3008844

    Article  Google Scholar 

  48. Pal MD, Brislawn CM, Brumby SR (2002) Feature extraction from hyperspectral images compressed using the JPEG-2000 standard. Fifth IEEE Southwest symposium on image analysis and interpretation IEEE, pp 168–172. https://doi.org/10.1109/IAI.2002.999912

  49. Penna B, Tillo T, Magli E, Olmo G (2007) Transform coding techniques for lossy hyperspectral data compression. IEEE Trans Geosci Remote Sens 45(5):1408–1421. https://doi.org/10.1109/TGRS.2007.894565

    Article  Google Scholar 

  50. Picollo M, Cucci C, Casini A, Stefani L (2020) Hyper-spectral imaging technique in the cultural heritage field: new possible scenarios. Sensors 20(10):2843. https://doi.org/10.3390/s20102843

    Article  Google Scholar 

  51. Quesada-Barriuso P, Argüello F, Heras DB (2014) Computing efficiently spectral-spatial classification of hyperspectral images on commodity GPUs. In: Recent advances in knowledge-based paradigms and applications, pp 19–42. https://doi.org/10.1007/978-3-319-01649-8_2

  52. Qureshi R, Uzair M, Khurshid K, Yan H (2019) Hyperspectral document image processing: applications, challenges and future prospects. Pattern Recogn 90:12–22. https://doi.org/10.1016/j.patcog.2019.01.026

    Article  Google Scholar 

  53. Ramakrishnan D, Bharti R (2015) Hyperspectral remote sensing and geological applications. Curr Sci 108(5):879–891

    Google Scholar 

  54. Rao AK, Bhargava S (1996) Multispectral data compression using bidirectional interband prediction. IEEE Trans Geosci Remote Sens 34(2):385–397. https://doi.org/10.1109/36.485116

    Article  Google Scholar 

  55. Rangnekar A, Mokashi N, Ientilucci EJ, Kanan C, Hoffman MJ (2020) Aerorit: a new scene for hyperspectral image analysis. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2020.2987199

    Article  Google Scholar 

  56. Reshef ER, Miller JB, Vavvas DG (2020) Hyperspectral imaging of the retina: a review. Int Ophthalmol Clin 60(1):85–96. https://doi.org/10.1097/IIO.0000000000000293

    Article  Google Scholar 

  57. Shahriyar S, Paul M, Murshed M, Ali M (2016) Lossless hyperspectral image compression using binary tree based decomposition. International conference on digital image computing: techniques and applications IEEE, pp 1–8. https://doi.org/10.1109/DICTA.2016.7797060

  58. Senapati RK, Prasad PK, Swain G, Shankar TN (2016) Volumetric medical image compression using 3D listless embedded block partitioning. SpringerPlus 5(1):1–16. https://doi.org/10.1186/s40064-016-3784-y

    Article  Google Scholar 

  59. Sharma D, Prajapati YK, Tripathi R (2018) Spectrally efficient 1.55 Tb/s Nyquist-WDM superchannel with mixed line rate approach using 27.75 Gbaud PM-QPSK and PM-16QAM. Opt Eng 57(7):076102. https://doi.org/10.1117/1.OE.57.7.076102

    Article  Google Scholar 

  60. Sharma D, Prajapati YK, Tripathi R (2018) Success journey of coherent PM-QPSK technique with its variants: a survey. IETE Tech Rev 37(1):36–55. https://doi.org/10.1080/02564602.2018.1557569

    Article  Google Scholar 

  61. Shimoni M, Haelterman R, Perneel C (2019) Hypersectral imaging for military and security applications: combining myriad processing and sensing techniques. IEEE Geosci Remote Sens Mag 7(2):101–117. https://doi.org/10.1109/MGRS.2019.2902525

    Article  Google Scholar 

  62. Shukla UP, Nanda SJ (2018) A binary social spider optimization algorithm for unsupervised band selection in compressed hyperspectral images. Expert Syst Appl 97(1):336–356. https://doi.org/10.1016/j.eswa.2017.12.034

    Article  Google Scholar 

  63. Singh P, Pandey PC, Petropoulos GP, Pavlides A, Srivastava PK, Koutsias N, Deng KAK, Bao Y (2020) Hyperspectral remote sensing in precision agriculture: present status, challenges, and future trends. In: Hyperspectral remote sensing, pp 121–146. https://doi.org/10.1016/B978-0-08-102894-0.00009-7

  64. Singh S, Kasana SS (2018) Efficient classification of the hyperspectral images using deep learning. Multimed Tools Appl 77(20):27061–27074. https://doi.org/10.1007/s11042-018-5904-x

    Article  Google Scholar 

  65. Signoroni A, Savardi M, Baronio A, Benini S (2019) Deep learning meets hyperspectral image analysis: a multidisciplinary review. J Imaging 5(5):52. https://doi.org/10.3390/jimaging5050052

    Article  Google Scholar 

  66. Song SW, Kim J, Eum C, Cho Y, Park CR, Woo Y-A, Kim HM, Chung H (2019) Hyperspectral Raman line mapping as an effective tool to monitor the coating thickness of pharmaceutical tablets. Anal Chem 91(9):5810–5816

    Article  Google Scholar 

  67. Srivastava V, Biswas B (2019) An efficient feature fusion in HSI image classification. Multidimens Syst Signal Process 31(1):221–247. https://doi.org/10.1007/s11045-019-00658-3

    Article  MATH  Google Scholar 

  68. Subrahmanyam KV, Kumar KK, Reddy NN (2019) New insights into the convective system characteristics over the Indian Summer Monsoon Region using space-based passive and active remote sensing techniques. IETE Tech Rev 37(2):211–219. https://doi.org/10.1080/02564602.2019.1593890

    Article  Google Scholar 

  69. Sudha VK, Sudhakar R (2013) 3D listless embedded block coding algorithm for compression of volumetric medical images. J Sci Ind Res 72:735–748

    Google Scholar 

  70. Sujitha B, Parvathy VS, Laxmi Lydia E, Rani P, Polkowski Z, Shankar K (2020) Optimal deep learning based image compression technique for data transmission on industrial Internet of things applications. Trans Emerging Telecommun Technol 32(7). https://doi.org/10.1002/ett.3976

  71. Tan Y, Lu L, Bruzzone L, Guan R, Chang Z, Yang C (2020) Hyperspectral band selection for lithologic discrimination and geological mapping. IEEE J Sel Top Appl Earth Obs Remote Sens 13:471–486. https://doi.org/10.1109/JSTARS.2020.2964000

    Article  Google Scholar 

  72. Tang X, Cho S, Pearlman WA (2003) 3D set partitioning coding methods in hyperspectral image compression. IEEE international conference on image processing (Cat. No. 03CH37429), vol 2, Barcelona, Spain, pp 239–242. https://doi.org/10.1109/ICIP.2003.1246661

  73. Tang X, Pearlman WA (2004a) Lossless compression for three-dimensional images. Electronic imaging 2004, vol 5308, San Jose, California, United State, pp 310–320. https://doi.org/10.1117/12.526004

  74. Tang X, Pearlman WA (2004b) Lossy-to-lossless block-based compression of hyperspectral volumetric data. IEEE international conference on image processing, vol 5, Singapore, pp 3283–3286. https://doi.org/10.1109/ICIP.2004.1421815

  75. Tang X, Pearlman WA (2006) Three-dimensional wavelet-based compression of hyperspectral images. In: Hyperspectral data compression. Springer, Boston, pp 273–308. https://doi.org/10.1007/0-387-28600-4_10.

  76. Tausif M, Kidwai NR, Khan E, Reisslein M (2015) FrWF-based LMBTC: memory-efficient image coding for visual sensors. IEEE Sens J 15(11):6218–6228. https://doi.org/10.1109/JSEN.2015.2456332

    Article  Google Scholar 

  77. Tausif M, Jain A, Khan E, Hasan M (2020) Low memory architectures of fractional wavelet filter for low-cost visual sensors and wearable devices. IEEE Sens J 20(13):6863–6871. https://doi.org/10.1109/JSEN.2019.2930006

    Article  Google Scholar 

  78. Teodoro AM, Bioucas-Dias JM, Figueiredo MA (2020) Block-Gaussian-mixture priors for hyperspectral denoising and inpainting. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2020.3006757

    Article  Google Scholar 

  79. Wang L, Zhang T, Fu Y, Huang H (2018) Hyperreconnet: joint coded aperture optimization and image reconstruction for compressive hyperspectral imaging. IEEE Trans Image Process 28(5):2257–2270. https://doi.org/10.1109/TIP.2018.2884076

    Article  MathSciNet  Google Scholar 

  80. Wang X, Tao J, Shen Y, Qin M, Song C (2018) Distributed source coding of hyperspectral images based on three-dimensional wavelet. J Indian Soc Remote Sens 46(4):667–673. https://doi.org/10.1007/s12524-017-0735-1

    Article  Google Scholar 

  81. Wu J, Wu Z, Wu C (2006) Lossy to lossless compressions of hyperspectral images using three-dimensional set partitioning algorithm. Opt Eng 45(2):027005. https://doi.org/10.1117/1.2173996

    Article  Google Scholar 

  82. Dua Y, Kumar V, Singh RS (2020) Comprehensive review of hyperspectral image compression algorithms. Opt Eng 59(9):090902. https://doi.org/10.1117/1.OE.59.9.090902

    Article  Google Scholar 

  83. Yang J, Li Y, Chan J, Shen Q (2017) Image fusion for spatial enhancement of hyperspectral image via pixel group based non-local sparse representation. Remote Sens 9(1):53–71. https://doi.org/10.3390/rs9010053

    Article  Google Scholar 

  84. Yu F, Liu L, He B, Huang Y, Shi C, Cai S, Song Y, Du S, Wan Q (2019) Analysis and FPGA realization of a novel 5D hyperchaotic four-wing memristive system, active control synchronization, and secure communication application. Complexity. https://doi.org/10.1155/2019/4047957

    Article  Google Scholar 

  85. Zhao F, Liu G, Wang X (2010) An efficient macroblock-based diverse and flexible prediction modes selection for hyperspectral images coding. Signal Process Image Commun 25(9):697–708. https://doi.org/10.1016/j.image.2010.07.003

    Article  Google Scholar 

  86. Zikiou N, Lahdir M, Helbert D (2019) Support vector regression-based 3D-wavelet texture learning for hyperspectral image compression. Vis Comput 36(7):1473–1490. https://doi.org/10.1007/s00371-019-01753-z

    Article  Google Scholar 

Download references

Acknowledgements

We are sincerely thankful to the anonymous reviewers for their critical comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrish Bajpai.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, S., Kidwai, N.R., Singh, H.V. et al. A low complexity hyperspectral image compression through 3D set partitioned embedded zero block coding. Multimed Tools Appl 81, 841–872 (2022). https://doi.org/10.1007/s11042-021-11456-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11456-0

Keywords

Navigation