Skip to main content
Log in

3D-listless block cube set-partitioning coding for resource constraint hyperspectral image sensors

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The hyperspectral image provides rich spectral information content, which facilitates multiple applications. With the rapid advancement of the spatial and spectral resolution of optical instruments, the image data size has increased by many folds. For that, it requires a compression algorithm having low coding complexity, low coding memory demand and high coding efficiency. In recent years, many coding algorithms are proposed. The wavelet transform-based set-partitioned hyperspectral compression algorithms have superior coding performance. These algorithms employ linked lists or state tables to track the significant/insignificant of the partitioned sets/coefficients. The proposed algorithm uses the pyramid hierarchy property of wavelet transform. The markers are used to track the significance/insignificance of the pyramid level. A single pyramid level has many sets. An insignificant pyramid level having multiple sets is represented as a single bit in proposed compression algorithm, while a single insignificant set in 3D Set Partition Embedded bloCK (3D-SPECK) and 3D-Listless SPECK (3D-LSK) is represented as a single bit. Through this, the requirement of the bits in the proposed algorithm is less than other wavelet transform compression algorithms at the high bit planes. The simulation result shows that the proposed compression algorithm has high coding efficiency with very less coding complexity and moderate coding memory requirement. The reduced coding complexity improves the performance of the image sensor and lowers the power consumption. Thus, the proposed compression algorithm has great potential in low-resource onboard hyperspectral imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No dataset is generated in this research.

References

  1. Sivakumar, C., Chaudhry, M.M., Paliwal, J.: Classification of pulse flours using near-infrared hyperspectral imaging. LWT. 15(154), 112799 (2022). https://doi.org/10.1016/j.lwt.2021.112799

    Article  Google Scholar 

  2. Zabalza, J., Murray, P., Bennett, S., Campbell, A., Marshall, S., Ren, J., Yan, Y., Bernard, R., Hepworth, S., Malone, S., Cockbain, N.: Hyperspectral imaging based corrosion detection in nuclear packages. IEEE Sens. J. 23(1), 25607–25617 (2023). https://doi.org/10.1109/JSEN.2023.3312938

    Article  Google Scholar 

  3. Sahoo, R.N., Rejith, R.G., Gakhar, S., Ranjan, R., Meena, M.C., Dey, A., Mukherjee, J., Dhakar, R., Meena, A., Daas, A., Babu, S.: Drone remote sensing of wheat N using hyperspectral sensor and machine learning. Precis. Agric. (2023). https://doi.org/10.1007/s11119-023-10089-7

    Article  Google Scholar 

  4. Sarinova, A., Lisnevskyi, R., Biloshchytskyi, A., and Akizhanova, A.: The Lossless Compression Algorithm of Hyperspectral Aerospace Images with Correlation and Bands Grouping. 2022 International Conference on Smart Information Systems and Technologies (SIST). IEEE, pp. 1-5 (2022). https://doi.org/10.1109/SIST54437.2022.9945821.

  5. Yoon, J.: Hyperspectral imaging for clinical applications. BioChip J. 16(1), 1–12 (2022). https://doi.org/10.1007/s13206-021-00041-0

    Article  Google Scholar 

  6. Shinde, S.R., Bhavsar, K., Kimbahune, S., Khandelwal, S., Ghose, A., & Pal, A. Detection of Counterfeit Medicines using Hyperspectral Sensing. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, pp. 6155–6158, (2020). https://doi.org/10.1109/EMBC44109.2020.9176419.

  7. Keane, A., Murray, P., Zabalza, J., Di Buono, A., Cockbain, N., Bernard, R.: Hyperspectral imaging analysis of corrosion products on metals in the UV range. Hyperspect. Imaging Appl. II(12338), 44–53 (2023). https://doi.org/10.1117/12.2647429

    Article  Google Scholar 

  8. Zaman, Z., Ahmed, S.B., Malik, M.I.: Analysis of hyperspectral data to develop an approach for document images. Sensors. 23(15), 6845 (2023). https://doi.org/10.3390/s23156845

    Article  Google Scholar 

  9. Aviara, N.A., Liberty, J.T., Olatunbosun, O.S., Shoyombo, H.A., Oyeniyi, S.K.: Potential application of hyperspectral imaging in food grain quality inspection, evaluation and control during bulk storage. J. Agric. Food Res. 8, 100288 (2022). https://doi.org/10.1016/j.jafr.2022.100288

    Article  Google Scholar 

  10. Deepa, C., Shetty, A., Narasimhadhan, A.V.: Performance evaluation of dimensionality reduction techniques on hyperspectral data for mineral exploration. Earth Sci. Inform. 16(1), 25–36 (2023). https://doi.org/10.1007/s12145-023-00956-2

    Article  Google Scholar 

  11. Nisha, A., and Anitha, A.: Current Advances in Hyperspectral Remote Sensing in Urban Planning. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). IEEE, pp. 94–98, (2022). https://doi.org/10.1109/ICICICT54557.2022.9917771.

  12. Pande, C.B., Moharir, K.N.: Application of hyperspectral remote sensing role in precision farming and sustainable agriculture under climate change: A review. Climate Change Impacts Nat. Resour. Ecosyst. Agric. Syst. 14, 503–520 (2023). https://doi.org/10.1007/978-3-031-19059-9_21

    Article  Google Scholar 

  13. Moharram, M.A., Sundaram, D.M.: Dimensionality reduction strategies for land use land cover classification based on airborne hyperspectral imagery: a survey. Environ. Sci. Pollut. Res. 30(3), 5580–5602 (2023). https://doi.org/10.1007/s11356-022-24202-2

    Article  Google Scholar 

  14. Zhang, Q., Smith, W., Sr., Shao, M.: The potential of monitoring carbon dioxide emission in a geostationary view with the GIIRS meteorological hyperspectral infrared sounder. Remote Sens. 15(4), 886 (2023). https://doi.org/10.3390/rs15040886

    Article  Google Scholar 

  15. Jun, S., Choi, W., Kim, D., Park, H., Kyeon, D., Lee, K., Jeon, Y.J., Lee, C., Kim, K., Ha, J. and Ryu, S.: Semiconductor Device Metrology for Detecting Defective Chip Due to High-Aspect Ratio-Based Structures using Hyperspectral Imaging and Deep Learning. Metrology, Inspection, and Process Control XXXVII. Vol. 12496. SPIE (2023). https://doi.org/10.1117/12.2657062.

  16. Thangavel, K., Spiller, D., Sabatini, R., Amici, S., Sasidharan, S.T., Fayek, H., Marzocca, P.: Autonomous satellite wildfire detection using hyperspectral imagery and neural networks: a case study on Australian wildfire. Remote Sens. 15(3), 720 (2023). https://doi.org/10.3390/rs15030720

    Article  Google Scholar 

  17. Naik, B.B., Naveen, H.R., Sreenivas, G., Choudary, K.K., Devkumar, D., Adinarayana, J.: Identification of water and nitrogen stress indicative spectral bands using hyperspectral remote sensing in maize during post-monsoon season. J. Indian Soc. Remote Sens. 48, 1787–1795 (2020). https://doi.org/10.1007/s12524-020-01200-w

    Article  Google Scholar 

  18. Shimoni, M., Haelterman, R., Perneel, C.: Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques. IEEE Geosci. Remote Sens. Mag. 7(2), 101–117 (2019). https://doi.org/10.1109/MGRS.2019.2902525

    Article  Google Scholar 

  19. Bajpai, S., Singh, H.V., Kidwai, N.R.: Feature Extraction & Classification of Hyperspectral Images Using Singular Spectrum Analysis & Multinomial Logistic Regression Classifiers." 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). IEEE, pp. 97–100 (2017). https://doi.org/10.1109/MSPCT.2017.8363982.

  20. Chandra, H., and Bajpai, S.: Listless Block Cube Tree Coding For Low Resource Hyperspectral Image Compression Sensors. 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), pp. 1–5. (2022) https://doi.org/10.1109/IMPACT55510.2022.10029076.

  21. Ramamurthy, M., Robinson, Y.H., Vimal, S., Suresh, A.: Auto encoder based dimensionality reduction and classification using convolutional neural networks for hyperspectral images. Microprocess. Microsyst. 79, 103280 (2020). https://doi.org/10.1016/j.micpro.2020.103280

    Article  Google Scholar 

  22. Zabalza, J., Ren, J., Wang, Z., Marshall, S., Wang, J.: Singular spectrum analysis for effective feature extraction in hyperspectral imaging. Geosci. Remote Sens. Lett. 11(11), 1886–1890 (2014). https://doi.org/10.1109/LGRS.2014.2312754

    Article  Google Scholar 

  23. Sneha, K.A.: Hyperspectral imaging and target detection algorithms: a review. Multimed. Tools Appl. 81(30), 44141–44206 (2022). https://doi.org/10.1007/s11042-022-13235-x

    Article  Google Scholar 

  24. Das, S., Bhattacharya, S., Routray, A., Kani Deb, A.: Band selection of hyperspectral image by sparse manifold clustering. IET Image Proc. 13(10), 1625–1635 (2019). https://doi.org/10.1049/iet-ipr.2018.5423

    Article  Google Scholar 

  25. Zhang, J., Cai, Z., Chen, F., Zeng, D.: Hyperspectral image denoising via adversarial learning. Remote Sens. 14(8), 1790 (2022). https://doi.org/10.3390/rs14081790

    Article  Google Scholar 

  26. Luo, F., Zhou, T., Liu, J., Guo, T., Gong, X., Ren, J.: Multiscale diff-changed feature fusion network for hyperspectral image change detection. IEEE Trans. Geosci. Remote Sens. 61, 1–13 (2023). https://doi.org/10.1109/TGRS.2023.3241097

    Article  Google Scholar 

  27. Luo, F., Zou, Z., Liu, J., Lin, Z.: Dimensionality reduction and classification of hyperspectral image via multistructure unified discriminative embedding. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2021). https://doi.org/10.1109/TGRS.2021.3128764

    Article  Google Scholar 

  28. Uddin, M.P., Mamun, M.A., Hossain, M.A.: PCA-based feature reduction for hyperspectral remote sensing image classification. IETE Tech. Rev. 38(4), 377–396 (2021). https://doi.org/10.1080/02564602.2020.1740615

    Article  Google Scholar 

  29. Grewal, R., Kasana, S.S., Kasana, G.: Hyperspectral image segmentation: a comprehensive survey. Multimed. Tools Appl. 82(14), 20819–20872 (2023). https://doi.org/10.1007/s11042-022-13959-w

    Article  Google Scholar 

  30. Das, S., Ghosal, S.: Unmixing aware compression of hyperspectral image by rank aware orthogonal parallel factorization decomposition. J. Appl. Remote. Sens. 17(4), 046509–046509 (2023). https://doi.org/10.1117/1.JRS.17.046509

    Article  Google Scholar 

  31. Dahiya, N., Singh, S., Gupta, S.: Comparative analysis and implication of Hyperion hyperspectral and landsat-8 multispectral dataset in land classification. J. Indian Soc. Remote Sens. 51, 2201–2213 (2023)

    Article  Google Scholar 

  32. Bajpai, S., Sharma, D., Alam, M., Chandel, V.S., Pandey, A.K., Tripathi, S.L.: Curvelet transform based compression algorithm for low resource hyperspectral image sensors. J. Elect. Comput. Eng. 2023, 1–18 (2023). https://doi.org/10.1155/2023/8961271

    Article  Google Scholar 

  33. Bajpai, S., Kidwai, N.R.: Fractional wavelet filter based low memory coding for hyperspectral image sensors. Multimed. Tools Appl. (2023). https://doi.org/10.1007/s11042-023-16528-x

    Article  Google Scholar 

  34. Sharma, D., Prajapati, Y.K., Tripathi, R.: Success journey of coherent PM-QPSK technique with its variants: a survey. IETE Tech. Rev. 37(1), 36–55 (2020). https://doi.org/10.1080/02564602.2018.1557569

    Article  Google Scholar 

  35. Jaiswal, G., Rani, R., Mangotra, H., Sharma, A.: Integration of hyperspectral imaging and autoencoders: Benefits, applications, hyperparameter tunning and challenges. Comput. Sci. Rev. 50, 100584 (2023). https://doi.org/10.1016/j.cosrev.2023.100584

    Article  MathSciNet  Google Scholar 

  36. Dua, Y., Singh, R.S., Kumar, V.: Compression of multi-temporal hyperspectral images based on RLS filter. The Vis. Comput. 38(1), 65–75 (2022). https://doi.org/10.1007/s00371-020-02000-6

    Article  Google Scholar 

  37. Chandra, H., Bajpai, S., Alam, M., Chandel, V.S., Pandey, A.K., Pandey, D.: 3D-Memory efficient listless set partitioning in hierarchical trees for hyperspectral image sensors. J. Intell. Fuzzy Syst. 45(6), 11163–11187 (2023). https://doi.org/10.3233/JIFS-231684

    Article  Google Scholar 

  38. Bajpai, S.: Low complexity image coding technique for hyperspectral image sensors. Multimed. Tools Appl. 82(20), 31233–31258 (2023). https://doi.org/10.1007/s11042-023-14738-x

    Article  Google Scholar 

  39. Dua, Y., Kumar, V., Singh, R.S.: Comprehensive review of hyperspectral image compression algorithms. Opt. Eng. 59(9), 090902 (2020). https://doi.org/10.1117/1.OE.59.9.090902

    Article  Google Scholar 

  40. Bajpai, S.: Low complexity and low memory compression algorithm for hyperspectral image sensors. Wireless Pers. Commun. 131(2), 805–833 (2023). https://doi.org/10.1007/s11277-023-10455-8

    Article  Google Scholar 

  41. Kidwai, N.R., Khan, E., Reisslein, M.: ZM-SPECK: A fast and memoryless image coder for multimedia sensor networks. IEEE Sens. J. 16(8), 2575–2587 (2016). https://doi.org/10.1109/JSEN.2016.2519600

    Article  Google Scholar 

  42. Tausif, M., Khan, E., Pinheiro, A.: Computationally efficient wavelet-based low memory image coder for WMSNs/IoT. Multidimens. Syst. Signal Process. 18, 1–24 (2023). https://doi.org/10.1007/s11045-023-00878-8

    Article  Google Scholar 

  43. Chandra, H., Bajpai, S.: 3D-Block Partitioning Embedded Coding for Hyperspectral Image Sensors. 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), pp 1–5 (2023). https://doi.org/10.1109/PIECON56912.2023.10085841.

  44. Nagendran, R., Vasuki, A.: Hyperspectral image compression using hybrid transform with different wavelet-based transform coding. Int. J. Wavelets Multiresolut. Inf. Process. 18(1), 1941008 (2020). https://doi.org/10.1142/S021969131941008X

    Article  MathSciNet  Google Scholar 

  45. Valsesia, D., Magli, E.: A novel rate control algorithm for onboard predictive coding of multispectral and hyperspectral images. IEEE Trans. Geosci. Remote Sens. 52(10), 6341–6355 (2014). https://doi.org/10.1109/TGRS.2013.2296329

    Article  Google Scholar 

  46. Li, R., Pan, Z., Wang, Y.: The linear prediction vector quantization for hyperspectral image compression. Multimed. Tools Appl. 78, 11701–11718 (2019). https://doi.org/10.1007/s11042-018-6724-8

    Article  Google Scholar 

  47. Gunasheela, K.S., Prasantha, H.S.: Compressive sensing approach to satellite hyperspectral image compression. Inf. Commun. Technol. Intell. Syst. (2019). https://doi.org/10.1007/978-981-13-1742-2_49

    Article  Google Scholar 

  48. Xu, K., Liu, B., Nian, Y., He, M., Wan, J.: Distributed lossy compression for hyperspectral images based on multilevel coset codes. Int. J. Wavelets Multiresol. Inform. Process. 15(02), 1750012 (2017)

    Article  MathSciNet  Google Scholar 

  49. Fu, W., Li, S., Fang, L., Benediktsson, J.A.: Adaptive spectral–spatial compression of hyperspectral image with sparse representation. IEEE Trans. Geosci. Remote Sens. 55(2), 671–682 (2016). https://doi.org/10.1109/TGRS.2016.2613848

    Article  Google Scholar 

  50. Fu, C., Yi, Y., Luo, F.: Hyperspectral image compression based on simultaneous sparse representation and general-pixels. Pattern Recogn. Lett. 116, 65–71 (2018). https://doi.org/10.1016/j.patrec.2018.09.013

    Article  Google Scholar 

  51. Das, S.: Hyperspectral image, video compression using sparse tucker tensor decomposition. IET Image Proc. 15(4), 964–973 (2021). https://doi.org/10.1049/ipr2.12077

    Article  Google Scholar 

  52. Dua, Y., Singh, R.S., Parwani, K., Lunagariya, S., Kumar, V.: Convolution neural network based lossy compression of hyperspectral images. Signal Process. Image Commun. 95, 116255 (2021). https://doi.org/10.1016/j.image.2021.116255

    Article  Google Scholar 

  53. Sujitha, B., Parvathy, V.S., Lydia, E.L., Rani, P., Polkowski, Z., Shankar, K.: Optimal deep learning based image compression technique for data transmission on industrial Internet of things applications. Trans. Emerg. Telecommun. Technol. 32(7), e3976 (2021). https://doi.org/10.1002/ett.3976

    Article  Google Scholar 

  54. Báscones, D., González, C., Mozos, D.: Hyperspectral image compression using vector quantization, PCA and JPEG2000. Remote Sens. 10(6), 907 (2018). https://doi.org/10.3390/rs10060907

    Article  Google Scholar 

  55. Bairagi, V.K., Sapkal, A.M., Gaikwad, M.S.: The role of transforms in image compression. J. Inst. Eng. INDIA Series B 94, 135–140 (2013). https://doi.org/10.1007/s40031-013-0049-9

    Article  Google Scholar 

  56. Tang, X., and Pearlman, W.A.: Lossy-to-Lossless Block-Based Compression of Hyperspectral Volumetric Data. 2004 International Conference on Image Processing, Vol. 5., pp. 3283–3286, IEEE (2004). https://doi.org/10.1109/ICIP.2004.1421815

  57. Tang, X., and Pearlman, W.A.: Three-Dimensional Wavelet-Based Compression of Hyperspectral Images. Hyperspectral Data Compression. Boston, MA: Springer US, pp. 273–308 (2006). https://doi.org/10.1007/0-387-28600-4_10.

  58. Bajpai, S., Kidwai, N.R., Singh, H.V.: 3D wavelet block tree coding for hyperspectral images. Int. J. Innov. Technol. Explor. Eng. IJITEE. 8(6C), 64–68 (2019)

    Google Scholar 

  59. Ngadiran, R., Boussakta, S., Sharif, B., & Bouridane, A.: Efficient implementation of 3D listless SPECK. International Conference on Computer and Communication Engineering (ICCCE'10). IEEE, pp. 1–4, (2010). https://doi.org/10.1109/ICCCE.2010.5556843.

  60. Sudha, V.K., Sudhakar, R.: 3D listless embedded block coding algorithm for compression of volumetric medical images. J. Sci. Ind. Res. 72, 735–748 (2013)

    Google Scholar 

  61. Bajpai, S., Kidwai, N.R., Singh, H.V., Singh, A.K.: Low memory block tree coding for hyperspectral images. Multimed. Tools Appl. 78(19), 27193–27209 (2019). https://doi.org/10.1007/s11042-019-07797-6

    Article  Google Scholar 

  62. Bajpai, S.: Low complexity block tree coding for hyperspectral image sensors. Multimed. Tools Appl. 81(23), 33205–33232 (2022). https://doi.org/10.1007/s11042-022-13057-x

    Article  Google Scholar 

  63. Bajpai, S., Kidwai, N.R., Singh, H.V., Singh, A.K.: A low complexity hyperspectral image compression through 3D set partitioned embedded zero block coding. Multimed. Tools Appl. 81(1), 841–872 (2022). https://doi.org/10.1007/s11042-021-11456-0

    Article  Google Scholar 

  64. Bajpai, S., Singh, H.V., Kidwai, N.R.: 3D modified wavelet block tree coding for hyperspectral images. Indones. J. Elect. Eng. Comput. Sci. IJEECS. 15(2), 1001–1008 (2019). https://doi.org/10.11591/ijeecs.v15.i2.pp1001-1008

    Article  Google Scholar 

  65. Kiely, A.B., Klimesh, M.A.: Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 47(8), 2672–2678 (2009). https://doi.org/10.1109/TGRS.2009.2015291

    Article  Google Scholar 

  66. Anand, A., Kumar, S.A.: A comprehensive study of deep learning-based covert communication. ACM Trans. Multimed. Comput. Commun. Appl. TOMM. 18(2), 1–9 (2022). https://doi.org/10.1145/3508365

    Article  Google Scholar 

  67. Tang, X., Pearlman, W.A., Modestino, J.W.: Hyperspectral Image Compression Using Three-Dimensional Wavelet Coding. Image and Video Communications and Processing 2003. Vol. 5022. SPIE, (2003). https://doi.org/10.1117/12.476516.

  68. Raja, S.P.: Wavelet-based image compression encoding techniques—a complete performance analysis. Int. J. Image Graph. 20(02), 2050008 (2020). https://doi.org/10.1142/S0219467820500084

    Article  Google Scholar 

  69. Hernández-Cabronero, M., Kiely, A.B., Klimesh, M., Blanes, I., Ligo, J., Magli, E., Serra-Sagrista, J.: The CCSDS 123.0-B-2 low-complexity lossless and near-lossless multispectral and hyperspectral image compression standard: a comprehensive review. IEEE Geosci. Remote Sens. Mag. 9(4), 102–119 (2021). https://doi.org/10.1109/MGRS.2020.3048443

    Article  Google Scholar 

  70. Bhardwaj, R.: Hiding patient information in medical images: an encrypted dual image reversible and secure patient data hiding algorithm for E-healthcare. Multimed. Tools Appl. 81(1), 1125–1152 (2022). https://doi.org/10.1007/s11042-021-11445-3

    Article  Google Scholar 

  71. Zikiou, N., Lahdir, M., Helbert, D.: Support vector regression-based 3D-wavelet texture learning for hyperspectral image compression. Vis. Comput. 36(7), 1473–1490 (2020). https://doi.org/10.1007/s00371-019-01753-z

    Article  Google Scholar 

  72. Setiadi, D.R.: PSNR vs SSIM: imperceptibility quality assessment for image steganography. Multimed. Tools Appl. 80(6), 8423–8444 (2021). https://doi.org/10.1007/s11042-020-10035-z

    Article  Google Scholar 

Download references

Acknowledgements

I am sincerely thankful to the anonymous reviewers for their critical comments and suggestions to improve the quality of the paper. The MCN for this manuscript is IU/R&D/2023-MCN002303.

Funding

The author received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Shrish Bajpai develops the algorithm, simulates the algorithms, prepares the manuscript and reviews the manuscript.

Corresponding author

Correspondence to Shrish Bajpai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

Author agreed on the final approval of the version to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, S. 3D-listless block cube set-partitioning coding for resource constraint hyperspectral image sensors. SIViP 18, 3163–3178 (2024). https://doi.org/10.1007/s11760-023-02979-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02979-0

Keywords

Navigation