Skip to main content
Log in

Contrast preserving decolorization based on the weighted normalized L1 norm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image decolorization is to transform a color image into a grayscale image with the preserved contrast and consistent details. It is an important tool in image processing and realistic applications, such as monochrome printing and e-ink display. In this paper, we propose a novel contrast preserving method for image decolorization. Our main contribution is threefold: Firstly, we define a new contrast feature for a color image which combine the correlated information among R, G and B channels with the color contrast in each channel. Secondly, we propose to use the weighted normalized L1 norm to measure the distance between the grayscale image and the color image contrast features, and formulate an constrained optimization problem. Finally, we utilize a discrete searching solver to solve the optimization problem efficiently. The proposed decolorization method is good at preserving low contrast as well as high contrast structures in the color image. The objective and subjective evaluation on three benchmark datasets demonstrates that our decolorization method is effective and competitive with some state-of-the-art decolorization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ancuti C, Ancuti C (2016) Laplacian-guided image decolorization. In: 2016 IEEE international conference on image processing (ICIP). pp 4107–4111

  2. Ancuti C, Ancuti C, Feixas M, Sbert M (2019) Image decolorization based on information theory. In: 2019 IEEE International conference on image processing (ICIP). pp 3242–3246

  3. Ancuti C, Ancuti C, Bekaert P (2011) Enhancing by saliency-guided decolorization. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.. pp 257–264

  4. Ancuti C, Ancuti CHC, Bekaert P (2010) Image and video decolorization by fusion. In: Proc. Asian Conf. Comput. Vis. (ACCV). pp 79–92

  5. Boyd S, Vandenberghe L (2006) Convex Optimization. New York: Cambridge Univ. Press.

  6. Brunet D, Vrscay ER, Wang Z (2012) On the mathematical properties of the structural similarity index. IEEE Trans Image Process 21(4):1488–1499

    Article  MathSciNet  Google Scholar 

  7. Ĉadík M (2008) Perceptual evaluation of color-to-grayscale image conversions. In: Computer graphics forum, vol 27. Wiley Online Library, pp 1745–1754

  8. Cai B, Xu X, Xing X (2018) Perception preserving decolorization. In: 2018 25th IEEE International conference on image processing (ICIP). pp 2810–2814

  9. Chen H, Fang F (2019) Bregman-tanimoto based method for contrast preserving decolorization. In: 2019 IEEE International conference on multimedia and expo (ICME). pp 1240–1245

  10. Du H, He S, Sheng B, Ma L, Lau RWH (2015) Saliency-guided color-to-gray conversion using region-based optimization. IEEE Trans Image Process 24 (1):434–443

    Article  MathSciNet  Google Scholar 

  11. Gonzalez RC, Woods RE (2007) Digital image processing, 3rd edn. Hoboken, Prentice-Hall Inc.

    Google Scholar 

  12. Gooch AA, Olsen SC, Tumblin J, Gooch B (2005) Color2gray: salience-preserving color removal. Acm Trans Graph 24(3):634–639

    Article  Google Scholar 

  13. Grundland M, Dodgson NA (2007) Decolorize: Fast, contrast enhancing, color to grayscale conversion. Pattern Recogn 40(11):2891–2896

    Article  Google Scholar 

  14. Hou X, Gong Y, Liu B, Sun K, Liu J, Xu B, Duan J, Qiu G (2018) Learning based image transformation using convolutional neural networks. IEEE Access 6:49779–49792

    Article  Google Scholar 

  15. Liu DNJ, Fang F (2019) Color-to-gray conversion with perceptual preservation and dark channel prior. Int J Numer Anal Model 16(4):668–679

    MathSciNet  MATH  Google Scholar 

  16. Jin Z, Li F, Ng MK (2014) A variational approach for image decolorization by variance maximization. SIAM J Imaging Sci 7(2):944–968

    Article  MathSciNet  Google Scholar 

  17. Kanan C, Cottrell GW (2012) Color-to-grayscale: does the method matter in image recognition? PloS one 7(1):e29740

    Article  Google Scholar 

  18. Kim Y, Jang C, Demouth J, Lee S (2009) Robust color-to-gray via nonlinear global mapping. Acm Trans Graph 28(5):1–4

    Google Scholar 

  19. Liu C, Liu T (2013) A sparse linear model for saliency-guided decolorization. In: 2013 IEEE International conference on image processing. pp 1105–1109

  20. Liu Q, Leung H (2019) Variable augmented neural network for decolorization and multi-exposure fusion. ELSEVIER Inf Fusion 46:114–127

    Article  Google Scholar 

  21. Liu Q, Li S, Xiong J, Qin B (2019) Wpmdecolor: weighted projection maximum solver for contrast-preserving decolorization. Vis Comput 35 (2):205–221

    Article  Google Scholar 

  22. Liu Q, Liu PX, Wang Y, Leung H (2017) Semiparametric decolorization with laplacian-based perceptual quality metric. IEEE Trans Circ Syst Vid Technol 27(9):1856–1868

    Google Scholar 

  23. Liu Q, Liu PX, Xie W, Wang Y, Liang D (2015) Gcsdecolor: Gradient correlation similarity for efficient contrast preserving decolorization. IEEE Trans Image Process 24(9):2889–904

    Article  MathSciNet  Google Scholar 

  24. Liu Q, Shao G, Wang Y, Gao J, Leung H (2017) Log-euclidean metrics for contrast preserving decolorization. IEEE Trans Image Process 26(12):5772–5783

    Article  MathSciNet  Google Scholar 

  25. Liu Q, Xiong J, Li Z, Zhang M, Wang Y (2017) Extended rgb2gray conversion model for efficient contrast preserving decolorization. Multimed Tools Appl 76(12):14055–14074

    Article  Google Scholar 

  26. Liu S, Zhang X (2019) Image decolorization combining local features and exposure features. IEEE Trans Multimed 21(10):2461–2472

    Article  Google Scholar 

  27. Lotto RB, Purves D (1999) The effects of color on brightness. Nat Neurosci 2(11):1010–1014

    Article  Google Scholar 

  28. Lu C, Li X, Jia J (2014) Contrast preserving decolorization with perception-based quality metrics. Int J Comput Vis 110(2):222–239

    Article  Google Scholar 

  29. Lu C, Xu L, Jia J (2012) Contrast preserving decolorization. In: Proc. IEEE int. conf. comput. photography (ICCP). pp 1–7

  30. Lu C, Xu L, Jia J (2012) Real-time contrast preserving decolorization. In: Proc. SIGGRAPH Asia Tech. Briefs, pp 1–4

  31. Ma K, Zhao T, Zeng Z, Wang K (2015) Objective quality assessment for color-to-gray image conversion. IEEE Trans Image Process 24(12):4673–4685

    Article  MathSciNet  Google Scholar 

  32. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th int’l conf. computer vision, vol 2. pp 416–423

  33. Nafchi HZ, Shahkolaei A, Hedjam R, Cheriet M (2017) Corrc2g: color to gray conversion by correlation. IEEE Signal Process Lett 24(11):1651–1655

    Article  Google Scholar 

  34. Shizume T, Ohashi G, Takamatsu H, Shimodaira Y (2015) Estimation of the helmholtz-kohlrausch effect for natural images. J Soc Inf Disp 22 (11):588–596

    Article  Google Scholar 

  35. Smith K, Landes PE, Thollot J, Myszkowski K (2010) Apparent greyscale: A simple and fast conversion to perceptually accurate images and video. Comput Graph Forum 27(2):193–200

    Article  Google Scholar 

  36. Wang W, Li Z, Wu S (2018) Color contrast-preserving decolorization. IEEE Trans Image Process 27(11):5464–5474

    Article  MathSciNet  Google Scholar 

  37. Wang W, Li Z, Wu S, Zeng L (2020) Hazy image decolorization with color contrast restoration. IEEE Trans Image Process 29:1776–1787

    Article  MathSciNet  Google Scholar 

  38. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (Apr. 2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  39. Zhang X, Liu S (2018) Contrast preserving image decolorization combining global features and local semantic features. Vis Comput 34(12):1099–1108

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (NSFC) (No. 61731009, No. 11671002), the Fundamental Research Funds for the Central Universities, Nature Science Foundation of Jiangsu Province (BK20181483), and Science and Technology Commission of Shanghai Municipality (No. 19JC1420102, No. 18dz2271000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Proof of Proposition 1

Proof

It is equivalent to prove: \(\forall x,y,z \in {\mathscr{A}}\),

$$ |x-y|(y+z)(x+z)+|y-z|(x+y)(x+z)-|x-z|(x+y)(y+z)\leq 0. $$
  • (1) xyz or xyz, we need to proof

    $$ |y-z|x^{2}-|y^{2}-z^{2}|x+yz|y-z|\geq 0. $$
    (32)

    As δ = (yz)4 ≥ 0, (32) holds.

  • (2) xzy or xzy, we need to proof

    $$ |y-z|x^{2}+3|y^{2}-z^{2}|x+yz|y-z|\geq 0. $$
    (33)

    As δ = (yz)2(9z2 + 9y2 + 14yz) ≥ 0, (33) holds.

  • (3) yxz or yxz, we need to proof

    $$ |y-x|z^{2}+3|y^{2}-x^{2}|x+xy|y-x|\geq 0. $$
    (34)

    As δ = (xy)2(9x2 + 9y2 + 14xy) ≥ 0, (34) holds.

1.2 A.2 Proof of Proposition 2

Proof

For k ≠ 0,

$$ f(kx,ky) = \frac{\|kx-ky\|}{\|kx\|+\|ky\|} = \frac{|k|\|x-y\|}{|k|(\|x\|+\|y\|)} = f(x,y). $$

1.3 A.3 Proof of Proposition 3

Proof

$$ f(x,y) = \frac{\|x-y\|}{\|x\|+\|y\|} = \frac{\|y-x\|}{\|y\|+\|x\|} = f(y,x). $$

Proof

(of Proposition4) We set c ≥ 0 of the sublevel set Ac because q ≥ 0 on the domain.

$$ x=(x_{i}) \in A_{c} \Longleftrightarrow \sum\limits_{i=1}^{n} |x_{i}-y_{i}| \leq \sum\limits_{i=1}^{n} c(|x_{i}|+|y_{i}|). $$

x, zAc, ∀t ∈ (0, 1),

$$ \begin{array}{@{}rcl@{}} && \sum\limits_{i=1}^{n} |tx_{i}+(1-t)z_{i}-y_{i}| \end{array} $$
(35)
$$ \begin{array}{@{}rcl@{}} &\leq & \sum\limits_{i=1}^{n} |tx_{i}-ty_{i}|+|(1-t)z_{i}-(1-t)y_{i}| \end{array} $$
(36)
$$ \begin{array}{@{}rcl@{}} &\leq & \sum\limits_{i=1}^{n} ct(|x_{i}|+|y_{i}|)+c(1-t)(|z_{i}|+|y_{i}|) \end{array} $$
(37)
$$ \begin{array}{@{}rcl@{}} &= & \sum\limits_{i=1}^{n} c(|tx_{i}+(1-t)z_{i}|+|y_{i}|). \end{array} $$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Li, F. & Lv, X. Contrast preserving decolorization based on the weighted normalized L1 norm. Multimed Tools Appl 80, 31753–31782 (2021). https://doi.org/10.1007/s11042-021-11172-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11172-9

Keywords

Navigation