Skip to main content
Log in

A robust digital watermarking method for depth-image-based rendering 3D video

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Depth-image-based rendering (DIBR) has become an accessible rendering technology for 3D video. A variety of digital watermarking methods have been proposed to protect the copyright of DIBR 3D video works. However, the robustness and imperceptibility of the existing methods need to be improved. Therefore, we apply the DIBR rendering features to propose a watermarking method to enhance the watermarking effect. First, to improve the robustness, we combine the DIBR rendering rules to construct steady feature data as the selection criterion of watermark embedding position. We detect the scale invariable feature transformation (SIFT) feature points from centre views and match them in every two adjacent views. Each two matched feature points construct one matching vector. The gradient-probability distributions of the vectors are used as the feature data to determine the watermark embedding position. Thus, the embedding positions are robust to the affine transformation and geometric attacks, and the watermark robustness improved. Second, to improve the imperceptibility, we design a joint watermark extraction strategy based on the similarity of the rendered left and right images. The watermark data are embedded into the centre view with low embedding strength and jointly extracted from the left and right images. This strategy guarantees the extraction accuracy while reducing the impact of watermark embedding on the original centre view. Experimental data show that the proposed method has good robustness and imperceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Al-Haj A, Farfoura ME, Mohammad A (2017) Transform-based watermarking of 3D depth-image-based-rendering images. Measurement 95:405–417

    Article  Google Scholar 

  2. Alrehily A, Thayananthan V (2018) Computer security and software watermarking based on return-oriented programming. Int J Comput Network Inform Secur 10(5):28–36

    Google Scholar 

  3. Arun KA, Poul PJ (2013) Protection of depth-image-based rendering 3D images using blind watermarking. International Conference on Computing, Communications and Networking Technologies, 1–6

  4. Asikuzzaman M, Alam MJ, Lambert AJ, Pickering MR (2014) A blind watermarking scheme for depth-image-based rendered 3D Video using the dual-tree complex wavelet transform. IEEE Int Conf Image Process 10:5497–5501

    Google Scholar 

  5. Asikuzzaman M, Alam MJ, Lambert AJ, Pickering MR (2016) Robust DT CWT-based DIBR 3D Video watermarking using chrominance embedding. IEEE Trans Multimed 18(9):1733–1748

    Article  Google Scholar 

  6. Bashir T, Usman I, Rehman J (2016) Secure digital watermarking using optimized improved spread spectrum and BCH coding for DIBR 3D-TV system. Multimed Tools Applic 75(13):7697–7713

    Article  Google Scholar 

  7. Bashir T, Usman I, Albesher AA, Atawneh SH, Naqvi SS (2020) A DCT domain smart vicinity reliant fragile watermarking technique for DIBR 3D-TV. Automatika 61(1):58–65

    Article  Google Scholar 

  8. Bennour J, Dugelay J (2006) Protection of 3D object through silhouette watermarking. IEEE Int Conf Acoust Speech Signal Process 2:221–224

    Google Scholar 

  9. Bors AG (2006) Watermarking mesh-based representations of 3-D objects using local moments. IEEE Trans Image Process 15(3):687–701

    Article  Google Scholar 

  10. Burini C, Baudry S, Doërr G (2014) Blind detection for disparitycoherent stereo Video watermarking. Proc. SPIE 9028:90280B-90280B-11

    Google Scholar 

  11. Cedillo-Hernandez A, Cedillo-Hernandez M, Garcia-Vazquez M, Nakano-Miyatake M, Perez-Meana H (2014) Ramirez-Acosta Transcoding resilient Video watermarking scheme based on spatio-temporal HVS and DCT. Signal Process 97:40–54

    Article  Google Scholar 

  12. Chammem A, Mitrea M, Prêteux F (2011) DWT-based stereoscopic image watermarking. Proc SPIE Stereoscopic Displays Appl XXII 7863 (4):786326–786326-10

    Google Scholar 

  13. Cui C, Wang S, Niu X (2017) A novel watermarking for DIBR 3D images with geometric rectification based on feature points. Multimed Tools Applic 76 (1):649–77

    Article  Google Scholar 

  14. Fehn C (2004) Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV. Proc SPIE-Int Soc Opt Eng 5291:93–104

    Google Scholar 

  15. Franco-Contreras J, Baudry S, Doërr G (2011) Virtual view invariant domain for 3D Video blind watermarking. International Conference on Image Processing, 2761–2764

  16. Garcia E, Dugelay J (2003) Texture-based watermarking of 3D Video objects. IEEE Trans Circ Syst Video Technol 13(8):853–866

    Article  Google Scholar 

  17. Halici E, Alatan AA (2009) Watermarking for depth-image-based rendering. IEEE International Conference on Image Processing, 4217–4220

  18. Hefeeda M, ElGamal T, Calagari K, Abdelsadek A (2015) Cloudbased multimedia content protection system. IEEE Trans Multimed 17(3):420–433

    Article  Google Scholar 

  19. Kim H, Lee J, Oh T, Lee H (2012) Robust DT-CWT watermarking for DIBR 3D images. IEEE Trans Broadcast 58(4):533–543

    Article  Google Scholar 

  20. Kim H, Lee J, Ryu SJ, Choi HY, Lee H (2013) DIBR 3D Video watermarking with faster DT-CWT quantization. IASTED Int Conf Signal Process Pattern Recogn Applic 2:222–226

    Google Scholar 

  21. Konstantinides JM, Mademlis A, Daras P, Mitkas PA, Strintzis MG (2009) Blind robust 3-D mesh watermarking based on oblate spheroidal harmonics. IEEE Trans Multimed 11(1):23–38

    Article  Google Scholar 

  22. Koz A, Cigla C, Alatan AA (2010) Watermarking of free-view Video. IEEE Trans Image Process 19(7):1785–1797

    Article  MathSciNet  Google Scholar 

  23. Lee MJ, Lee J, Lee H (2011) Perceptual watermarking for 3D stereoscopic Video using depth information. Int Conf Intell Inform Hiding Multimed Signal Process 10:81–84

    Google Scholar 

  24. Lin Y, Wu J (2011) A digital blind watermarking for depth-image-based rendering 3D images. IEEE Trans Broadcast 57(2):602–611

    Article  Google Scholar 

  25. Liu Y, Prabhakaran B, Guo X (2012) Spectral watermarking for parameterized surfaces. IEEE Trans Inform Forens Secur 7(5):1459–1471

    Article  Google Scholar 

  26. Liu X, Li F, Du J, Guan Y, Zhu Y, Zou B (2017) A robust and synthesized-unseen watermarking for the DRM of DIBR-based 3D Video. Neurocomputing 222:155–69

    Article  Google Scholar 

  27. Lowe DG (2003) Distinctive image features from scale-invariant key points. Int J Comput Vis 20:91– 110

    Google Scholar 

  28. Malvar HS, Florencio DAF (2003) Improved spread spectrum: a new modulation technique for robust watermarking. IEEE Trans Signal Process 51(4):898–905

    Article  MathSciNet  Google Scholar 

  29. Nam S-H, Kim W-H, Mun S-M, Hou J-U, Choi S, Lee H-K (2018) A SIFT features based blind watermarking for DIBR 3D images. Multimed Tools Applic 77(7):7811–50

    Article  Google Scholar 

  30. Ohbuchi R, Masuda H, Aono M (1998) Watermarking threedimensional polygonal models through geometric and topological modifications. IEEE J Selected Areas Commun 16(4):551–560

    Article  Google Scholar 

  31. Ou ZH, Chen LH (2015) A robust watermarking method for stereopair images based on unmatched block bitmap. Multimed Tools Applic 75(6):3259–3280

    Article  Google Scholar 

  32. Pei SC, Wang YY (2015) Auxiliary metadata delivery in view synthesis using depth no synthesis error model. IEEE Trans Multimed 17(1):128–133

    Article  Google Scholar 

  33. Pizzolante R, Castiglione A, Carpentieri B, De Santis A, Palmieri F, Castiglione A (2017) On the protection of consumer genomic data in the internet of living things. Comput Secur 74:384–400

    Article  Google Scholar 

  34. Rana S, Sur A (2019) View invariant DIBR-3D image watermarking using DT-CWT. Multimed Tools Applic 78(12):16665–93

    Article  Google Scholar 

  35. Sakr N, Georganas ND, Zhao J, Petriu EM (2010) Multimodal vision—haptic perception of digital watermarks embedded in 3-D meshes. IEEE Trans Instrum Meas 59(5):1047–1055

    Article  Google Scholar 

  36. Singh Kh (2018) Manglem a robust rotation resilient video watermarking scheme based on the SIFT. Multimed Tools Applic 77(13):16419–44

    Article  Google Scholar 

  37. Smolic A, Mueller K, Stefanoski N, Ostermann J, Gotchev A, Akar GB, Triantafyllidis G, Koz A (2007) Coding algorithms for 3DTV-a survey. IEEE Trans Circ Syst Video Technol 17(11):1606–1621

    Article  Google Scholar 

  38. Tian H, Wang Z, Zhao Y, Ni R, Qin L (2012) Spread spectrum-based multi-bit watermarking for free-view Video. International Workshop Digital Forensics and Watermarking, 156–166

  39. Wang S, Cui C, Niu X (2014) Watermarking for DIBR 3D images based on SIFT feature points. Measurement 48(0):54–62

    Article  Google Scholar 

  40. Wang Y, Gong D, Lu B, Xiang F, Liu F (2018) Exception handling-based dynamic software watermarking. IEEE Access 6:8882–89

    Article  Google Scholar 

  41. Yu Z, Ip HHS, Kwok LF (2003) A robust watermarking scheme for 3D triangular mesh models. Pattern Recogn 36(11):2603–2614

    Article  Google Scholar 

  42. Zadokar SR, Raskar VB, Shinde SV (2013) A digital watermarking for anaglyph 3D images. International Conference on Advances in Computing, Communications and Informatics, 483–488

  43. Zafeiriou S, Tefas A, Pitas I (2005) Blind robust watermarking schemes for copyright protection of 3D mesh objects. IEEE Trans Vis Comput Graph 11(5):596–607

    Article  Google Scholar 

  44. Zhang L, Tam WJ (2005) Stereoscopic image generation based on depth images for 3D TV. IEEE Trans Broadcast 51(2):191–199

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grants No. 61971296, U19A2078), Sichuan Science and Technology Planning Project (Grants No. 2020YFG0319, 2020YFH0186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Luo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Peng, D. A robust digital watermarking method for depth-image-based rendering 3D video. Multimed Tools Appl 80, 14915–14939 (2021). https://doi.org/10.1007/s11042-020-10375-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10375-w

Keywords

Navigation