Skip to main content

Advertisement

Log in

A genetic algorithm approach for image representation learning through color quantization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Over the last decades, hand-crafted feature extractors have been used to encode image visual properties into feature vectors. Recently, data-driven feature learning approaches have been successfully explored as alternatives for producing more representative visual features. In this work, we combine both research venues, focusing on the color quantization problem. We propose two data-driven approaches to learn image representations through the search for optimized quantization schemes, which lead to more effective feature extraction algorithms and compact representations. Our strategy employs Genetic Algorithm, a soft-computing apparatus successfully utilized in Information-retrieval-related optimization problems. We hypothesize that changing the quantization affects the quality of image description approaches, leading to effective and efficient representations. We evaluate our approaches in content-based image retrieval tasks, considering eight well-known datasets with different visual properties. Results indicate that the approach focused on representation effectiveness outperformed baselines in all tested scenarios. The other approach, which also considers the size of created representations, produced competitive results keeping or even reducing the dimensionality of feature vectors up to 25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Baeza-Yates RA, Ribeiro-Neto B (1999) Modern information retrieval. Addison-Wesley Longman Publishing Co. Inc., Boston

    Google Scholar 

  2. Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Article  Google Scholar 

  3. Bharti V, Biswas B, Shukla KK (2020) Recent trends in nature inspired computation with applications to deep learning. In: 2020 10th International conference on cloud computing, data science & engineering (confluence). IEEE, pp 294–299

  4. Bhunia AK, Bhattacharyya A, Banerjee P, Roy PP, Murala S (2020) A novel feature descriptor for image retrieval by combining modified color histogram and diagonally symmetric co-occurrence texture pattern. Pattern Anal Applic 23:703–723. https://doi.org/10.1007/s10044-019-00827-x

    Article  Google Scholar 

  5. Bo L, Ren X, Fox D (2011) Hierarchical matching pursuit for image classification: architecture and fast algorithms. In: Advances in neural information processing systems. pp 2115–2123

  6. Bukh PND (1992) The art of computer systems performance analysis, techniques for experimental design, measurement, simulation and modeling. JSTOR

  7. Coates A, Ng AY (2011) The importance of encoding versus training with sparse coding and vector quantization. In: Proceedings of the 28th international conference on machine learning (ICML-11). pp 921–928

  8. Criminisi A (2004) Microsoft research Cambridge object recognition image database. Available online: https://www.microsoft.com/en-us/research/project/image-understanding/

  9. da S Torres R, Falcão AX (2006) Content-based image retrieval: theory and applications. Rev Inform Teór Apl (RITA) 13(2):161–185

    Google Scholar 

  10. da S Torres R, Falcão AX, Gonçalves MA, Papa JP, Zhang B, Fan W, Fox EA (2009) A genetic programming framework for content-based image retrieval. Pattern Recognit 42(2):283–292

    Article  Google Scholar 

  11. Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold. https://books.google.com.br/books?id=Kl7vAAAAMAAJ

  12. Davis SM, Landgrebe DA, Phillips TL, Swain PH, Hoffer RM, Lindenlaub JC, Silva LF (1978) Remote sensing: the quantitative approach, vol 1978. McGraw-Hill International Book Co, New York, p 405

    Google Scholar 

  13. dos Santos JA, Penatti OAB, da Silva Torres R (2010) Evaluating the potential of texture and color descriptors for remote sensing image retrieval and classification. VISAPP (2)203–208

  14. Fan W, Fox EA, Pathak P, Wu H (2004) The effects of fitness functions on genetic programming-based ranking discovery for web search. J Am Soc Inf Sci Technol 55(7):628–636

    Article  Google Scholar 

  15. García-Lamont F, Cervantes J, López-Chau A, Ruiz-Castilla S (2020) Color image segmentation using saturated RGB colors and decoupling the intensity from the hue. Multimed Tools Appl 79(1-2):1555–1584

    Article  Google Scholar 

  16. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  17. Hinton GE, Zemel RS (1994) Autoencoders, minimum description length and helmholtz free energy. In: Advances in neural information processing systems. pp 3–10

  18. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  Google Scholar 

  19. Khaldi B, Aiadi O, Kherfi ML (2019) Combining colour and grey-level co-occurrence matrix features: a comparative study. IET Image Process 13(9):1401–1410

    Article  Google Scholar 

  20. Kim TK (2015) T test as a parametric statistic. Korean J Anesthesiol 68(6):540–546

    Article  Google Scholar 

  21. Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv:13126114

  22. Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images. Master’s thesis, University of Tront

  23. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp 1097–1105

  24. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  25. Leibe B, Schiele B (2003) Analyzing appearance and contour based methods for object categorization. In: Proceedings 2003 IEEE computer society conference on computer vision and pattern recognition, vol 2, pp II–409

  26. Li Y (2005) Object and concept recognition for content-based image retrieval. PhD thesis, University of Washington, Seattle

  27. Li Y, Shapiro LG (2002) Consistent line clusters for building recognition in cbir. In: Proceedings of the international conference on pattern recognition

  28. Li T, Leng J, Kong L, Guo S, Bai G, Wang K (2019) DCNR: deep cube CNN with random forest for hyperspectral image classification. Multimed Tools Appl 78(3):3411–3433

    Article  Google Scholar 

  29. Li X, Li D, Peng L, Zhou H, Chen D, Zhang Y, Xie L (2019) Color and depth image registration algorithm based on multi-vector-fields constraints. Multimedia Tools Appl 78(17):24:301–24:319

    Article  Google Scholar 

  30. Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870

    Article  Google Scholar 

  31. Luccheseyz L, Mitray S (2001) Color image segmentation: a state-of-the-art survey. Proc Indian Natl Sci Acad (INSA-A) 67(2):207–221

    Google Scholar 

  32. Makhzani A, Frey B (2013) K-sparse autoencoders. arXiv:13125663

  33. Makhzani A, Frey BJ (2015) Winner-take-all autoencoders. In: Advances in neural information processing systems. pp 2791–2799

  34. Mohseni SA, Wu HR, Thom JA, Bab-Hadiashar A (2020) Recognizing induced emotions with only one feature: a novel color histogram-based system. IEEE Access 8:37:173–37:190

    Article  Google Scholar 

  35. Nakamura R, Fonseca L, dos Santos JA, Torres RDS, Yang XS, Papa JP (2014) Nature-inspired framework for hyperspectral band selection. IEEE Trans Geosci Remote Sens 52(4):2126–2137

    Article  Google Scholar 

  36. Nayar SK, Nene SA, Murase H (1996) Real-time 100 object recognition system. In: Proceedings of IEEE international conference on robotics and automation, vol 3, pp 2321–2325

  37. Ng A, et al. (2011) Sparse autoencoder. In: CS294A lecture notes, vol 72, pp 1–19

  38. Nogueira K, Penatti OA, dos Santos JA (2017) Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit 61:539–556

    Article  Google Scholar 

  39. Oh IS, Lee JS, Moon BR (2004) Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell (11):1424–1437

  40. Omran MG, Engelbrecht AP, Salman A (2005) A color image quantization algorithm based on particle swarm optimization. Informatica 29(3):261–269

    MATH  Google Scholar 

  41. Penatti OAB, Torres RDS (2008) Color descriptors for web image retrieval: a comparative study. In: 2008 XXI Brazilian symposium on computer graphics and image processing. pp 163–170

  42. Penatti OAB, Valle E, Torres RDS (2012) Comparative study of global color and texture descriptors for web image retrieval. J Vis Commun Image Representat 23(2):359–380

    Article  Google Scholar 

  43. Pérez-Delgado M L (2019) The color quantization problem solved by swarm-based operations. Appl Intell 49(7):2482–2514

    Article  Google Scholar 

  44. Ponti M, Nazaré TS, Thumé GS (2016) Image quantization as a dimensionality reduction procedure in color and texture feature extraction. Neurocomputing 173:385–396

    Article  Google Scholar 

  45. Ranzato M, Poultney C, Chopra S, Cun YL (2007) Efficient learning of sparse representations with an energy-based model. In: Schölkopf B, Platt J, Hoffman T (eds) Advances in neural information processing systems, vol 19. MIT Press, pp 1137–1144

  46. Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contractive auto-encoders: explicit invariance during feature extraction

  47. Rocha A, Hauagge DC, Wainer J, Goldenstein S (2010) Automatic fruit and vegetable classification from images. Comput Electron Agric 70(1):96–104

    Article  Google Scholar 

  48. Rodriguez-Coayahuitl L, Morales-Reyes A, Escalante HJ (2019) Evolving autoencoding structures through genetic programming. Genet Progr Evolvable Mach 20(3):413–440

    Article  Google Scholar 

  49. Salakhutdinov R, Hinton G (2009) Deep boltzmann machines. In: Artificial intelligence and statistics. pp 448–455

  50. Scheunders P (1996) A genetic lloyd-max image quantization algorithm. Pattern Recognit Lett 17(5):547–556

    Article  Google Scholar 

  51. Sheng T, Feng C, Zhuo S, Zhang X, Shen L, Aleksic M (2018) A quantization-friendly separable convolution for mobilenets. In: 2018 1st Workshop on energy efficient machine learning and cognitive computing for embedded applications (EMC2). IEEE, pp 14–18

  52. Smeulders AW, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Article  Google Scholar 

  53. Stehling RO, Nascimento MA, Falcão AX (2002) A compact and efficient image retrieval approach based on border/interior pixel classification. In: International conference on information and knowledge management. pp 102–109

  54. Suganuma M, Shirakawa S, Nagao T (2017) A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the genetic and evolutionary computation conference. pp 497–504

  55. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32

    Article  Google Scholar 

  56. Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning. pp 1096–1103

  57. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408

    MathSciNet  MATH  Google Scholar 

  58. Wang JZ, Li J, Wiederhold G (2001) Simplicity: semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23 (9):947–963

    Article  Google Scholar 

  59. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  60. Xie L, Yuille A (2017) Genetic cnn. In: 2017 IEEE international conference on computer vision (ICCV). pp 1388–1397

  61. Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems. pp 270–279

  62. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv (CSUR) 38(4):13

    Article  Google Scholar 

  63. Yu K, Lin Y, Lafferty J (2011) Learning image representations from the pixel level via hierarchical sparse coding. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). pp 1713–1720

  64. Zeng S, Huang R, Wang H, Kang Z (2016) Image retrieval using spatiograms of colors quantized by gaussian mixture models. Neurocomputing 171:673–684

    Article  Google Scholar 

  65. Zhang S, He F (2020) DRCDN: learning deep residual convolutional dehazing networks. Visual Comput 36(9):1797–1808

    Article  Google Scholar 

  66. Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Computer vision and pattern recognition. pp 6848–6856

Download references

Acknowledgments

This study was financed in part by: the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001; the Brazilian National Council for Scientific and Technological Development (CNPq)—grants #424700/2018-2 and #311395/2018-0; and the Minas Gerais Research Foundation (FAPEMIG)—grant APQ-00449-17. Authors are also grateful to CAPES (grant #88881.145912/2017-01), São Paulo Research Foundation—FAPESP (grants #2014/12236-1, #2015/24494-8, #2016/50250-1, and #2017/20945-0) and the FAPESP—Microsoft Virtual Institute (grants #2013/50155-0, #2013/50169-1, and #2014/50715-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefersson A. dos Santos.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, E.M., Torres, R.d.S. & dos Santos, J.A. A genetic algorithm approach for image representation learning through color quantization. Multimed Tools Appl 80, 15315–15350 (2021). https://doi.org/10.1007/s11042-020-10194-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10194-z

Keywords

Navigation