Skip to main content
Log in

An efficient hybrid framework for visual tracking using Exponential Quantum Particle Filter and Mean Shift optimization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Visual object tracking is a key component in many computer vision applications. In real time visual tracking, abrupt changes in speed and direction of the object are demanding challenges. In this paper, we present an efficient visual tracking framework which can efficiently handle the above challenge, i.e., abrupt motion of the object. The framework is formulated by hybridizing the proposed Exponential Quantum Particle Filter (EQPF) with the traditional Mean-Shift (MS) optimization for efficient computation in object tracking task. The efficacy of EQPF in estimating the abrupt changes in functions, is tested on the standard Quail function, and then it has been successfully applied in object tracking algorithm. The effective multi-modal propagation strategies of Quantum Particle Filter (QPF) enables the tracker to handle the abrupt changes in speed and direction, whereas, the hybridization with MS enhances the computational efficiency by reducing the number of particles. Performance of the proposed method is assessed by experimenting on different publicly available challenging sequences. Both the subjective and objective evaluations are carried out to validate the superiority of the proposed tracking method over other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  2. Baxter RH, Leach MJV, Mukherjee SS, Robertson NM (2015) An adaptive motion model for person tracking with instantaneous head-pose features. IEEE Signal Processing Letters 22(5):578–582

    Article  Google Scholar 

  3. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York, p 2006

    MATH  Google Scholar 

  4. Bouten L, Handel RV, James MR (2007) An introduction to quantum filtering. SIAM J Control Optim 46(6):2199–2241

    Article  MathSciNet  MATH  Google Scholar 

  5. Broida TJ, Chellappa R (1986) Estimation of object motion parameters from noisy images. IEEE Trans Pattern Anal Mach Intell 8(1):90–99

    Article  Google Scholar 

  6. Cham TJ, Rehg JM (1999) A multiple hypothesis approach to figgure tracking. In: IEEE computer society conference on computer vision and pattern recognition, 1999. CVPR 1999, IEEE

  7. Chan T, Hu AGC, Plant JB (1979) A Kalman filter based tracking scheme with input estimation. IEEE Trans Aerospace Electronic Sys 15(2):237–244

    Article  Google Scholar 

  8. Chase BA, Geremia JM (2009) Single-shot parameter estimation via continuous quantum measurement. Physical Review APS 79(2):022314

    Google Scholar 

  9. Chen J, Li X, Wang M, Ma L, Xu B (2019) Fast compressive tracking combined with Kalman filter. Multimed Tools Appl, Springer 78(16):22463–22477

    Article  Google Scholar 

  10. Cheng W, Sun Y, Li G, Jiang G, Liu H (2019) Jointly network: a network based on CNN and RBM for gesture recognition. Neural Computing and Applications, Springer 31(1):309–323

    Article  Google Scholar 

  11. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577

    Article  Google Scholar 

  12. Concha D, Cabido R, Pantrigo JJ, Montemayor AS (2018) Performance evaluation of a 3D multi-view-based particle filter for visual object tracking using GPUs and multicore CPUs. J Real-Time Image Proc 15(2):309–327

    Article  Google Scholar 

  13. CXai-xia M, Xin-yan Z (2019) Object tracking method based on particle filter of adaptive patches combined with multi-features fusion. Multimed Tools Appl 78 (7):8799–8811

    Article  Google Scholar 

  14. Davies EB (1969) Quantum stochastic processes. Communications in Mathematical Physics, Springer 15(4):277–304

    Article  MathSciNet  MATH  Google Scholar 

  15. Dhassi Y, Aarab A (2019) Robust visual tracking based on adaptive gradient descent optimization of a cost function with parametric models of appearance and geometry. Multimedia Tools and Applications, Springer 78(15):21349–21373

    Article  Google Scholar 

  16. Handel RV, Stockton JK, Mabuchi H (2005) Modelling and feedback control design for quantum state preparation. Journal of Optics B: Quantum and Semiclassical Optics 7(10):S179–S197

    Article  MathSciNet  Google Scholar 

  17. Isard M, Blake A (1998) Condensation: conditional density propagation for visual tracking. Int J Comput Vis, Springer 29(1):5–28

    Article  Google Scholar 

  18. Kalman RE (1960) A new approach to linear filtering and prediction problems. Journal of Basic Engineering, American Society of Mechanical Engineers 82(1):35–45

    MathSciNet  Google Scholar 

  19. Khalili A, Soliman AA, Asaduzzaman Md (2015) Quantum particle filter: a multiple mode method for low delay abrupt pedestrian motion tracking. Electronics Letters, IET 51(16):1251–1253

    Article  Google Scholar 

  20. Kitagawa G (1987) Non-gaussian state—space modeling of nonstationary time series. Journal of the American statistical association. Taylor & Francis Group 82(400):1032–1041

    MATH  Google Scholar 

  21. Kristan M, Kovacic S, Leonardis A, Pers J (2010) A two-stage dynamic model for visual tracking. IEEE Trans Sys Man, Cybern Part B (Cybernetics) 40(6):1505–1520

    Article  MATH  Google Scholar 

  22. Kwon J, Lee KM (2010) Visual tracking decomposition. In: Computer Vision and Pattern Recognition, 2010. CVPR 2010. IEEE, pp 1269–1276

  23. Li P, Zhang T, Ma B (2004) Unscented Kalman filter for visual curve tracking. Image and Vision Computing, Elsevier 22(2):157–164

    Article  Google Scholar 

  24. Liu J, West M Doucet A, de Freitas, Gordon N (eds) (2001) Combined parameter and state estimation in simulation-basedfiltering. Springer, New York

  25. Madrigal F, Hayet JB (2013) Evaluation of multiple motion models for multiple pedestrian visual tracking. In: 10th IEEE international conference on advanced video and signal based surveillance 2013. AVSS 2013. pp 31–36

  26. Mengjuan F, Zhaojie J, Xiantong Z, Jing L (2017) Real-time visual tracking based on improved perceptual hashing. Multimed Tools Appl, Springer 76(3):4617–4634

    Article  Google Scholar 

  27. Minty GJ (1962) Monotone (nonlinear) operators in Hilbert space. Duke Mathematical Journal 29(3):341–346

    Article  MathSciNet  MATH  Google Scholar 

  28. Naeem A, Pridmore TP, Mills S (2007) Managing particle spread via hybrid particle filter/kernel mean shift tracking. In: British Machine Vision Conference 2007, pp 1–10

  29. Nguyen QA, Robles-Kelly A, Shen C (2006) Enhanced kernel-based tracking for monochromatic and thermo graphic video. In: IEEE international conference on video and signal based surveillance, 2006. IEEE, pp 28–28

  30. Pourmomtaz N, Nahvi M (2020) Multispectral particle filter tracking using adaptive decision-based fusion of visible and thermal sequences. Multimedia Tools and Applications, Springer, pp 1–30

  31. Rohilla R, Sikri V, Kapoor R (2017) Spider monkey optimisation assisted particle filter for robust object tracking. IET Comput Vis 11(3):207–219

    Article  Google Scholar 

  32. Shan C, Tan T, Wei Y (2007) Real-time hand tracking using a mean shift embedded particle filter. Pattern Recognition, Elsevier 40(7):1958–1970

    Article  MATH  Google Scholar 

  33. Veenman CJ, Reinders MJT, Backer E (2001) Resolving motion correspondence for densely moving points. IEEE Trans Pattern Anal Mach Intell 23(1):54–72

    Article  Google Scholar 

  34. Verstraete F, Doherty AC, Mabuchi H (2001) Sensitivity optimization in quantum parameter estimation. Physical Review APS 64(3):032111

    Google Scholar 

  35. Wang Q, Fang J, Yuan Y (2014) Multi-cue based tracking. Neurocomputing, Elsevier 131:227–236

    Article  Google Scholar 

  36. Wang Q, Yan P, Yuan Y, Li X (2013) Multi-spectral saliency detection. Pattern Recogn Lett 34(1):34–41

    Article  Google Scholar 

  37. Wang Y, Chaib-draa B, Giguere P, aGagné C (2011) Nonparametric techniques for bayesian filtering

  38. Yao YS, Chellappa R (1994) Dynamic feature point tracking in an image sequence. Computer Vision & Image Processing. In: Proceedings of the 12th IAPR International Conference 1994, pp 654–657

  39. Yuan Y, Fang J, Wang Q (2014) Robust superpixel tracking via depth fusion. IEEE Trans Circuits Sys Video Technol 24(1):15–26

    Article  Google Scholar 

  40. Zhang S, Yu H, Wang T, Qi L, Dong J, Liu H (2018) Dense 3D facial reconstruction from a single depth image in unconstrained environment. Virtual Reality, Springer 22(1):37–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prajna Parimita Dash.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, P.P., Patra, D. An efficient hybrid framework for visual tracking using Exponential Quantum Particle Filter and Mean Shift optimization. Multimed Tools Appl 79, 21513–21537 (2020). https://doi.org/10.1007/s11042-020-08999-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08999-z

Keywords

Navigation