Skip to main content
Log in

Reversible data hiding using the dynamic block-partition strategy and pixel-value-ordering

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The reversible watermarking algorithm based on pixel value ordering (PVO) embeds secret data by modifying the maximum and minimum values in a pixel block. The performance of this algorithm heavily depends on the inherent correlation among adjacent pixels within an image block. To improve the inherent correlation among adjacent pixels within an image block, a new method to incorporate the dynamic block-partition strategy into the PVO algorithm is proposed in this paper. This new method includes the following procedure: First, the host image is divided into non-overlapping regions according to the image pixel values; then, each region is partitioned into different blocks, which are subsequently classified according to the local complexity and predefined threshold values for embedding; and finally, watermark embedding is performed using the PVO-based algorithm. In the proposed method, the pixel values of each embedded block are located in a relatively small region to improve the inherent correlation and thereby enhance the embedding performance of PVO. The experimental results show that the proposed algorithm has a better embedding performance compared with that of the conventional PVO based algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  2. Awrangjeb M, Kankanhalli MS (2005) Reversible watermarking using a perceptual model. J Electro Imaging 14(1):013014–013014-8

    Article  Google Scholar 

  3. Caldelli R, Filippini F, Becarelli R (2010) Reversible watermarking techniques: an overview and a classification, EURASIPJ . Inf. Secur. articleID134546

  4. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  5. Celik MU, Sharma G, Tekalp AM (2006) Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans Image Process 15(4):1042–1049

    Article  Google Scholar 

  6. Chang C-C, Kieu TD (2010) A reversible data hiding scheme using complementary embedding strategy. Inf Sci 180(16):3045–3058

    Article  Google Scholar 

  7. Chen C-C, Tsai Y-H (2011) Adaptive reversible image watermarking scheme. J Syst Softw 84(3):428–434

    Article  Google Scholar 

  8. Chen M, Chen Z, Zeng X, Xiong Z (2009) Reversible data hiding using additive prediction-error expansion. Proc 11th ACM Workshop Multimed Sec :19–24

  9. Coatrieux G, Pan W, Cuppens-Boulahia N, Cuppens F, Roux C (2013) Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans Inform Forensics Sec 8(1):111–120

    Article  Google Scholar 

  10. Fridrich J, Goljan M, Du R (2002) Lossless data embedding - new paradigm in digital watermarking, EURASIPJ. Appl Signal Process (2):185–196

  11. He W, Xiong G, Zhou K, Cai J (2016) Reversible data hiding based on multilevel histogram modification and pixel value grouping. J Vis Commun Image R 40:459–469

    Article  Google Scholar 

  12. He W, Cai J, Zhou K, Xiong G (2017) Efficient PVO-based reversible data hiding using multistage blocking and prediction accuracy matrix. J Vis Commun Image Represent 46:58–69

    Article  Google Scholar 

  13. Hong W (2010) An efficient prediction-and-shifting embedding technique for high quality reversible data hiding. EURASIP J Adv Signal Process. article ID 104835

  14. Hong W (2012) Adaptive reversible data hiding method based on error energy control and histogram shifting. Opt Commun 285(2):101–108

    Article  Google Scholar 

  15. Hong W, Chen T-S (2010) A local variance-controlled reversible data hiding method using prediction and histogram-shifting. J Syst Softw 83(12):2653–2663

    Article  Google Scholar 

  16. Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842

    Article  Google Scholar 

  17. C.W. Honsinger, P.W. Jones, M. Rabbani, J.C. Stoffel (2001) Lossless recovery of an original image containing embedded data, US Patent No 6,278,791

  18. Kamran A, Khan SAM (2014) A high capacity reversible watermarking approach for authenticating images: exploiting down-sampling, histogram processing, and block selection. Inf Sci 256:162–183

    Article  Google Scholar 

  19. Kamstra L, Heijmans HJAM (2005) Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans Image Process 14(12):2082–2090

    Article  MathSciNet  Google Scholar 

  20. Khan A, Siddiqa A, Munib S, Malik SA (2014) A recent survey of reversible watermarking techniques. Inf Sci 279(20):251–272

    Article  Google Scholar 

  21. Lee SK, Suh YH, Ho YS (2006) Reversible image authentication based on watermarking. Proc IEEE ICME :1321–1324

  22. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  23. Li X, Li B, Yang B, Zeng T (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22(6):2181–2191

    Article  MathSciNet  MATH  Google Scholar 

  24. Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93:198–205

    Article  Google Scholar 

  25. Li X, Zhang W, Gui X, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inform Forensics Sec 8(7):1091–1100

    Article  Google Scholar 

  26. Li X, Zhang W, Gui X, Yang B (2015) Efficient reversible data hiding based on multiple histograms modification. IEEE Trans Info Forensics Sec 10(9):2016–2027

    Article  Google Scholar 

  27. Ni Z, Shi Y, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circ Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  28. Ou B, Li X, Zhao Y, Ni R, Shi Y-Q (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5010–5021

    Article  MathSciNet  MATH  Google Scholar 

  29. Pei Q, Wang X, Li Y, Li H (2013) Adaptive reversible watermarking with improved embedding capacity. J Syst Softw 86:2841–2848

    Article  Google Scholar 

  30. Peng F, Li X, Yang B (2014) Improved PVO-based reversible data hiding. Digit Signal Process 25:255–265

    Article  Google Scholar 

  31. Qin C, Chang CC, Huang YH, Liao L-T (2013) An inpainting-assisted reversible steganogrephic scheme using a histogram shifting mechanism. IEEE Trans Circ Syst Video Technol 23(7):1109–1118

    Article  Google Scholar 

  32. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circ Syst Video Technol 19(7):989–999

    Article  Google Scholar 

  33. Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730

    Article  MathSciNet  Google Scholar 

  34. Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–729

    Article  MathSciNet  Google Scholar 

  35. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  36. Wang X, Li X, Yang B, Guo Z (2010) Efficient generalized integer transform for reversible watermarking. IEEE Signal Process Lett 17(6):567–570

    Article  Google Scholar 

  37. Wang X, Ding J, Pei Q (2015) A novel reversible image data hiding scheme based on pixel value ordering and dynamic pixel block partition. Information Sci 310:16–35

    Article  Google Scholar 

  38. Weng S, Zhao Y, Pan J-S, Ni R (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process Lett 15:721–724

    Article  Google Scholar 

  39. Weng S, Pan J-s, Li L (2016) Reversible data hiding based on an adaptive pixel-embedding strategy and two-layer embedding. Inf Sci 369:144–159

    Article  Google Scholar 

  40. Weng S, Liu Y, Pan J-S, Cai N (2016) Reversible data hiding based on flexible block-partition and adaptive block-modification strategy. J Vis Commun Image Represent 41:185–199

    Article  Google Scholar 

  41. Wu X, Memon N (1997) Context-based, adaptive, lossless image coding. IEEE Trans Commun 45(4):437–444

    Article  Google Scholar 

  42. Wu M, Yu H, Liu B (2003) Data hiding in image and video: part II-designs and applications. IEEE Trans Image Process 12(6):696–705

    Article  Google Scholar 

  43. Zhang W, Hu X, Li X, Yu N (2013) Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression. IEEE Trans Image Process 22(7):2775–2785

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China (No. 2016YFB0800601) and the Key Basic Research Plan in Shaanxi Province (Grant No. 2017ZDXM-GY-014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, W., Wang, X., Li, F. et al. Reversible data hiding using the dynamic block-partition strategy and pixel-value-ordering. Multimed Tools Appl 78, 7927–7945 (2019). https://doi.org/10.1007/s11042-018-6410-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6410-x

Keywords

Navigation