Skip to main content
Log in

Wavelet denoising with generalized bivariate prior model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel wavelet method based on a prior model of wavelet coefficient with a generalized bivariate distribution function. The generalized bivariate prior model extends the isotropic bivariate prior model and anisotropic prior model, and can well characterize the joint parent-child statistical properties of many categories of images. Owing to the fact that the variance of wavelet coefficients are quite different for different scales and positions, we propose a local adaptive marginal variance estimation method based on this newly generalized prior model to improve the accuracy of marginal variance by considering the distribution of wavelet coefficients as the combination of Gaussian distribution and Laplacian distribution. By simulation experiments from three aspects, the results of the proposed method outperform the mainstream isotropic wavelet methods and anisotropic wavelet methods, and the practicality of the proposed method is verified by real noise image experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Achim A, Kuruoglu E (2005) Image denoising using bivariate a-stable distributions in the complex wavelet domain. IEEE Signal Process Lett 12(1):17–20

    Article  Google Scholar 

  2. Chen G, Bui T (2003) Multiwavelets denoising using neighboring coefficients. IEEE Signal Process Lett 10(7):211–214

    Article  Google Scholar 

  3. Chen G, Bui T, Krzyzak A (2005) Image denoising using neighbouring wavelet coefficients. Integr Comput Aided Eng 12:99–107

    Article  Google Scholar 

  4. Chen G, Xie W, Zhao Y (2013) Wavelet-based denoising: a brief review. 2013 Fourth International Conference on Intelligent Control and Information Processing, pp 570–574

  5. Chen G, Zhang P, Wu Y et al (2016) Denoising magnetic resonance images using collaborative non-local means. Neurocomputing 177:215–227

    Article  Google Scholar 

  6. Cho D, Bui T (2005) Multivariate statistical modeling for image denoising using wavelet transforms. Signal Process Image Commun 20:77–89

    Article  Google Scholar 

  7. Cui J, Liu Y, Xu Y et al (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE Trans Syst Man Cybern Syst. Hum 43(4):996–1002

    Article  Google Scholar 

  8. Dong M, Zhang J, Ma Y (2015) Image denoising via bivariate shrinkage function based on a new structure of dual contoulet transform. Signal Process 109:25–37

    Article  Google Scholar 

  9. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  MathSciNet  MATH  Google Scholar 

  10. Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3):425–455

    Article  MathSciNet  MATH  Google Scholar 

  11. Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90(432):1200–1224

    Article  MathSciNet  MATH  Google Scholar 

  12. Du Y, Lu X, Chen L et al (2016) An inverval type-2 T-S fuzzy classification system based on PSO and SVM for gender recognition. Multimed Tools Appl. 75:987–1007

    Article  Google Scholar 

  13. Figueiredo M, Nowak R (2001) Wavelet-based image estimation: an empirical bayes approach using Jeffrey’s noninformative prior. IEEE Trans Image Process 10:1322–1331

    Article  MathSciNet  MATH  Google Scholar 

  14. Hill P, Achim A, Bull D, Al-Mualla M (2014) Dual tree complex wavelet coefficient magnitude modeling using the bivariate Cauchy-Rayleigh distribution for image denoising. Signal Process 105:464–472

    Article  Google Scholar 

  15. Hu C, Ye M, Ji S et al (2015) A new face recognition method based on image decomposition for single sample per person problem. Neurocomputing 160:287–299

    Article  Google Scholar 

  16. Huang D, Kang L, Wang Y et al (2014) Self-learning based image decomposition with applications to single image denoising. IEEE Trans Multimedia 16(1):83–93

    Article  Google Scholar 

  17. Hyvarinen A (1999) Sparse code shrinkage: denoising of nongaussian date by maximum likelihood estimation. Neural Comput 11:1739–1768

    Article  Google Scholar 

  18. Jain P, Tyagi V (2014) A survey of edge-preserving image denoising method. Inf Syst Front. https://doi.org/10.1007/s10796-014-9527-0

  19. Liu Y, Zhang X, Cui J, et al (2010) Visual analyisis of child-adult interactive behaviors in video sequences. 16th International Conference on Virtual Systems and Multimedia, pp 26–33

  20. Liu Y, Cui J, Zhao H, et al (2012) Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking. 21st International Conference on Pattern Recognition, pp 898–901

  21. Liu Y, Nie L, Han L, et al (2015) Action2Activity: recognizing complex activities from sensor data. Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, pp 1617-1623

  22. Liu Y, Nie L, Liu L et al (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  23. Loza A, Bull D, Canagarajah N, Achim A (2010) Non-Gaussian model-based fusion of noisy images in the wavelet domain. Comput Vis Image Underst 114:54–65

    Article  Google Scholar 

  24. Nasri M, Nezamabadi-pour H (2009) Image denoising in the wavelet domain using a new adaptive thresholding function. Neurocomputing 72:1012–1025

    Article  Google Scholar 

  25. Perona P, Malik J (1990) Scale space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  26. Portilla J, Strela V, Wainwright M, Simoncelli E (2003) Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans Image Process 12(11):1338–1351

    Article  MathSciNet  MATH  Google Scholar 

  27. Rabbani H, Gazor S (2010) Image denoising employing local mixture models in sparse domains. IET Image Process 4(5):413–428

    Article  Google Scholar 

  28. Rabbani H, Vafadust M, Gazor S (2006) Image denoising based on a mixture of Laplace distributions with local parameters in complex wavelet domain. 2006 I.E. International Conference on Image Processing, pp 2597–2600

  29. Rabbani H, Nezafat R, Gazor S (2009) Wavelet-domain medical image denoising using bivariate Laplacian mixture model. IEEE Trans Biomed Eng 56(12):2826–2837

    Article  Google Scholar 

  30. Rahman S, Ahmad M, Swamy M (2008) Bayesian wavelet-based image denoising using the Gauss-Hermite expansion. IEEE Trans Image Process 17(10):1755–1771

    Article  MathSciNet  MATH  Google Scholar 

  31. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithm. Physica D 60:259–268

    Article  MathSciNet  MATH  Google Scholar 

  32. Sendur L, Selesnick IW (2002) Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans Signal Process 50(11):2744–2756

    Article  Google Scholar 

  33. Tan S, Jiao L (2007) Multivariate statistical models for image denosing in the wavelet domain. Int J Comput Vis 75(2):209–230

    Article  Google Scholar 

  34. Tomassi D, Milone D, Nelson J (2015) Wavelet shrinkage using adaptive structured sparsity constraints. Signal Process 106:73–87

    Article  Google Scholar 

  35. Yin S, Gao L, Ling Y, Jin G (2011) Image Denoising with anisotrpic bivariate shrinkage. Signal Process 91:2078–2090

    Article  MATH  Google Scholar 

  36. Yoon S, Yoon J (2016) Depth map enhancement using adaptive moving least squares method with a total variation minimization. Multimed Tools Appl 75(23):15929–15938

    Article  Google Scholar 

  37. Zeng W, Lu X (2011) Region-based non-local means algorithm for noise removal. Electron Lett 47(20):1125–1127

    Article  Google Scholar 

  38. Zeng W, Lu X, Tan X (2013) Non-linear fourth-order telegraph-diffusion equation for noise removal. IET Image Process 7(4):335–342

    Article  MathSciNet  Google Scholar 

  39. Zeng W, Lu X, Tan X (2015) A local structural adaptive partial differential equation for image denoising. Multimed Tools Appl 73(4):743–757

    Article  Google Scholar 

  40. Zeng W, Lu X, Fei S (2015) Image super-resolution employing a spatial adaptive prior model. Neurocomputing 162:218–233

    Article  Google Scholar 

  41. Zeng W, Du Y, Hu C (2017) Noise suppression by discontinuity indicator controlled non-local means method. Multimed Tools Appl 76:13239–13253

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and anonymous reviewers for their constrctive and valuable comments, which helped in improving the presentation of our work. This work was supported by the National Natural Science Foundation of China (61403081, U1333202), and the Natural Science Foundation of Jiangsu Province (BK20140638).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weili Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, W., Fu, X., Hu, C. et al. Wavelet denoising with generalized bivariate prior model. Multimed Tools Appl 77, 20863–20887 (2018). https://doi.org/10.1007/s11042-017-5497-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5497-9

Keywords

Navigation