Skip to main content

Fusion of physiological measures for multimodal biometric systems

Abstract

Physiological measures are widely studied from a medical point of view. Most applications lie in the field of diagnosis of heart attacks, as regards the ECG, or the detection of epileptic events, in the case of the EEG. In the last ten years, these signals are being investigated also from a biometric point of view, in order to exploit the discriminative capability provided by these measures in recognizing individuals. The present work proposes a multimodal biometric recognition system based on the fusion of the first lead (i) of the electrocardiogram (ECG) with six different bands of the electroencephalogram (EEG). The proposed approach is based on the extraction of fiducial features (peaks) from the ECG combined with spectrum features of the EEG. A dataset has been created, by composing the signals of two well-known databases. The results, reported by means of EER values, AUC values and ROC curves, show good recognition performances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Agrafioti F, Hatzinakos D (2008) Fusion of ecg sources for human identification. In: 3rd international symposium on communications, control and signal processing, 2008. ISCCSP, vol 2008, pp 1542–1547. doi:10.1109/ISCCSP.2008.4537472

  2. Barra S, Casanova A, Fraschini M, Nappi M (2015) Eeg/ecg signal fusion aimed at biometric recognition. Springer International Publishing

  3. Bermudez T, Lowe D, Arlaud-Lamborelle AM (2009) Eeg/ecg information fusion for epileptic event detection. In: 16Th international conference on digital signal processing, 2009, pp 1–8, doi:10.1109/ICDSP.2009.5201231, (to appear in print)

  4. Biel L, Pettersson O, Philipson L, Wide P (2001) Ecg analysis: a new approach in human identification. IEEE Trans Instrum Meas 50(3):808–812. doi:10.1109/19.930458

    Article  Google Scholar 

  5. Boulgouris N, Plataniotis K, Micheli-Tzanakou E (2010) Multimodal physiological biometrics authentication. Wiley-IEEE Press, pp 461–482. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5396661. doi:10.1002/9780470522356.ch18

  6. Bousseljot R, Kreiseler D, Schnabel A (1995) Nutzung der ekg-signaldatenbank cardiodat der ptb über das internet. Biomedizinische Technik/Biomedical Engineering 40(s1):317–318

    Google Scholar 

  7. Campisi P, La Rocca D (2014) Brain waves for automatic biometric-based user recognition. IEEE Trans Inf Forensics Secur 9(5):782–800

    Article  Google Scholar 

  8. Del Pozo-Banos M, Alonso JB, Ticay-Rivas JR, Travieso CM (2014) Electroencephalogram subject identification: a review. Expert Syst Appl 41 (15):6537–6554

    Article  Google Scholar 

  9. Delorme A, Makeig S (2004) Eeglab: an open source toolbox for analysis of single-trial {EEG} dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. doi:10.1016/j.jneumeth.2003.10.009

    Article  Google Scholar 

  10. DelPozo-Banos M, Travieso CM, Weidemann CT, Alonso JB (2015) Eeg biometric identification: a thorough exploration of the time-frequency domain. J Neural Eng 12(5):056,019

    Article  Google Scholar 

  11. Draper HW, Peffer CJ, Stallmann FW, Littmann D, Pipberger HV (1964) The corrected orthogonal electrocardiogram and vectorcardiogram in 510 normal men (frank lead system). Circulation 30(6):853–864

    Article  Google Scholar 

  12. Fraschini M, Hillebrand A, Demuru M, Didaci L, Marcialis G (2015) An eeg-based biometric system using eigenvector centrality in resting state brain networks. IEEE Signal Process Lett 22(6):666–670. doi:10.1109/LSP.2014.2367091

    Article  Google Scholar 

  13. Fratini A, Sansone M, Bifulco P, Cesarelli M (2015) Individual identification via electrocardiogram analysis. BioMedical Engineering Online 14(1). doi:10.1186/s12938-015-0072-y

  14. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215– e220. doi:10.1161/01.CIR.101.23.e215. http://circ.ahajournals.org/cgi/content/full/101/23/e215PMID:1085218

  15. Hoekema R, Uijen GJ, Van Oosterom A (2001) Geometrical aspects of the interindividual variability of multilead ecg recordings. IEEE Trans Biomed Eng 48 (5):551–559

    Article  Google Scholar 

  16. Koné C, Tayari IM, Le-Thanh N, Belleudy C (2015) Multimodal recognition of emotions using physiological signals with the method of decision-level fusion for healthcare applications. In: Inclusive smart cities and e-health. Springer, pp 301–306

  17. Kozmann G, Lux RL, Green LS (1989) Sources of variability in normal body surface potential maps. Circulation 79(5):1077–1083

    Article  Google Scholar 

  18. Kyoso M, Uchiyama A (2001) Development of an ecg identification system. In: Engineering in medicine and biology society, 2001. Proceedings of the 23rd annual international conference of the IEEE, vol 4, pp 3721–3723. doi:10.1109/IEMBS.2001.1019645

  19. La Rocca D, Campisi P, Vegso B, Cserti P, Kozmann G, Babiloni F, De Vico Fallani F (2014) Human brain distinctiveness based on eeg spectral coherence connectivity. IEEE Trans Biomed Eng 61(9):2406–2412. doi:10.1109/TBME.2014.2317881

    Article  Google Scholar 

  20. Lopes Da Silva F (2013) {EEG} And meg: relevance to neuroscience. Neuron 80 (5):1112–1128. doi:10.1016/j.neuron.2013.10.017. http://www.sciencedirect.com/science/article/pii/S0896627313009203

    Article  Google Scholar 

  21. Matos AC, Loureno A, Nascimento J (2014) Embedded system for individual recognition based on {ECG} biometrics. Procedia Technology 17:2013. Conference on Electronics, Telecommunications and Computers {CETC}

  22. Noh YH, Hwang GH, Jeong DU (2011) Implementation of real-time abnormal ecg detection algorithm for wearable healthcare. In: 6Th international conference on computer sciences and convergence information technology (ICCIT), 2011, pp 111–114

  23. Odinaka I, Lai P H, Kaplan A, O’Sullivan J, Sirevaag E, Rohrbaugh J (2012) Ecg biometric recognition: a comparative analysis. IEEE Trans Inf Forensics Secur 7(6):1812–1824. doi:10.1109/TIFS.2012.2215324

    Article  Google Scholar 

  24. Pan Y, Ge S, Al Mamun A, Tang FR (2008) Detection of seizures in eeg signal using weighted locally linear embedding and svm classifier. In: IEEE conference on cybernetics and intelligent systems, vol 2008, pp 358–363. doi:10.1109/ICCIS.2008.4670889

  25. Plataniotis K, Hatzinakos D, Lee J (2006) Ecg biometric recognition without fiducial detection. In: biometrics symposium: special session on research at the biometric consortium conference, 2006, pp 1–6. doi:10.1109/BCC.2006.4341628

  26. Prittopaul P, Sathya S, Jayasree K (2015) Cyber physical system approach for heart attack detection and control using wireless monitoring and actuation system. In: IEEE 9th international conference on intelligent systems and control (ISCO), 2015, pp 1–6. doi:10.1109/ISCO.2015.7282352

  27. Ravish D, Shenoy N, Shanthi K, Nisargh S (2014) Heart function monitoring, prediction and prevention of heart attacks: Using artificial neural networks. In: International conference on contemporary computing and informatics (IC3i) 2014, pp 1–6. doi:10.1109/IC3I.2014.7019580

  28. Riera A, Dunne S, Cester I, Ruffini G (2008) Starfast: a wire-less wearable eeg/ecg biometric system based on the enobio sensor. In: Proceedings of the international workshop on wearable micro and nanosystems for personalised health

  29. Riera A, Soria-Frisch A, Caparrini M, Cester I, Ruffini G (2009) 1 Multimodal physiological biometrics authentication. Biometrics: Theory, Methods, and Applications:461–482

  30. Rosli N, Rahman M, Mazlan S, Zamzuri H (2014) Electrocardiographic (ecg) and electromyographic (emg) signals fusion for physiological device in rehab application. In: IEEE student conference on research and development (SCOReD), 2014, pp 1–5. doi:10.1109/SCORED.2014.7072965

  31. Ross A, Jain AK (2004) Multimodal biometrics: an overview. In: Proceedings of 12th european signal processing conference (EUSIPCO)

  32. Sakai M, Wei D (2008) Wavelet shrinkage applications of eeg-ecg-based human-computer interface. In: 8Th IEEE international conference on computer and information technology, 2008. CIT 2008, pp 538–543. doi:10.1109/CIT.2008.4594732

  33. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) Bci2000: a general-purpose brain-computer interface (bci) system. IEEE Trans Biomed Eng 51(6):2004

    Article  Google Scholar 

  34. Shahid S, Prasad G, Sinha R (2011) On fusion of heart and brain signals for hybrid bci. In: 5Th international IEEE/EMBS conference on neural engineering (NER), vol 2011, pp 48–52. doi:10.1109/NER.2011.5910486

  35. Shantha Selva Kumari R, Prabin Jose J (2011) Seizure detection in eeg using time frequency analysis and svm. In: International conference on emerging trends in electrical and computer technology (ICETECT), 2011, pp 626–630. doi:10.1109/ICETECT.2011.5760193

  36. Shen T, Tompkins W, Hu Y (2002) One-lead ecg for identity verification. In: Engineering in medicine and biology, 2002. 24th annual conference and the annual fall meeting of the biomedical engineering society EMBS/BMES conference, 2002. Proceedings of the second joint, vol 1, pp 62–63. doi:10.1109/IEMBS.2002.1134388

  37. Soria-Frisch A, Riera A, Dunne S (2010) Fusion operators for multi-modal biometric authentication based on physiological signals. In: IEEE international conference on fuzzy systems (FUZZ), 2010, pp 1–7. doi:10.1109/FUZZY.2010.5584121

  38. Verma G, Tiwary U (2014) Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals. NeuroImage 102:162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Barra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barra, S., Casanova, A., Fraschini, M. et al. Fusion of physiological measures for multimodal biometric systems. Multimed Tools Appl 76, 4835–4847 (2017). https://doi.org/10.1007/s11042-016-3796-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3796-1

Keywords

  • EEG signal
  • ECG signal
  • Biometric
  • Multimodal system
  • Physiological measures