Skip to main content
Log in

Digital image steganalysis based on the reciprocal singular value curve

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Embedding secret messages in steganographic approaches is similar to adding some weak noises to the original media. One of the traditional ways for image steganalysis is computing a feature sets using noise residuals. From another perspective, the disturbance of natural image statistics can be explored to extract the feature vector for steganalysis. In fact, the alteration of natural scene statistics can be investigated to reveal the presence of secret messages embedded in images. Hence, the feature vectors can be constructed using such changes. In the proposed scheme, the alteration of singular value curve is used to construct the steganalysis feature vector. Two spatial and JPEG based feature vectors are extracted in the proposed statistical exploitation. The experimental results illustrate the acceptable performance of the proposed feature vectors for both universal and JPEG based steganalysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Avciba I, Kharrazi M, Memon N, Sankur L (2005) Image steganalysis with binary similarity measures. EURASIP J Appl Sig Process 2005:2749–2757. doi:10.1155/asp.2005.2749

    Article  MATH  Google Scholar 

  2. Avcibas I, Memon N, Sankur B (2003) Steganalysis using image quality metrics. Image Process IEEE Trans 12(2):221–229

    Article  MathSciNet  Google Scholar 

  3. Berkeley Dataset https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/images.html

  4. Chan CK, Cheng LM (2004) Hiding data in images by simple LSB substitution. Pattern Recogn 37(3):469–474

    Article  MATH  Google Scholar 

  5. Chen C, Shi YQ (2008) JPEG image steganalysis utilizing both intrablock and interblock correlations. In: Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on. IEEE, pp 3029–3032

  6. Cox IJ (2008) Digital watermarking and steganography. Morgan Kaufmann Publishers

  7. Fridrich J, Goljan M, Soukal D (2005) Perturbed quantization steganography. Multimedia Systems 11(2):98–107. doi:10.1007/s00530-005-0194-3

    Article  Google Scholar 

  8. Gul G, Dirik AE, Avcibas I (2007) Steganalytic features for JPEG compression-based perturbed quantization. Sig Process Lett IEEE 14(3):205–208. doi:10.1109/LSP.2006.884010

    Article  Google Scholar 

  9. Gul G, Kurugollu F (2009) A novel universal steganalyser design:“LogSv”. In: Image Processing (ICIP), 2009 16th IEEE International Conference on, IEEE, pp 4249–4252

  10. Gul G, Kurugollu F (2010) SVD-based universal spatial domain image steganalysis. Inf Forensic Secur IEEE Trans 5(2):349–353. doi:10.1109/tifs.2010.2041826

    Article  Google Scholar 

  11. Guo Q, Zhang C, Zhang Y, Liu H (2015) An efficient SVD-based method for image denoising. Circ Syst Video Technol IEEE Trans PP 99:1–1. doi:10.1109/TCSVT.2015.2416631

    Google Scholar 

  12. Hetzl S, Mutzel P (2005) A graph–theoretic approach to steganography. In: Dittmann J, Katzenbeisser S, Uhl A (eds) Communications and multimedia security, vol 3677. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 119–128. doi:10.1007/11552055_12

    Google Scholar 

  13. Holub V, Fridrich J (2015) Low-complexity features for JPEG steganalysis using undecimated DCT. Inf Forensic Secur IEEE Trans 10(2):219–228. doi:10.1109/TIFS.2014.2364918

    Article  Google Scholar 

  14. Hongmei G, Swaminathan A, Min W (2007) Noise features for image tampering detection and steganalysis. In: Image Processing, 2007. ICIP 2007. IEEE International Conference on, Sept. 16 2007-Oct. 19 2007. pp VI - 97–VI - 100. doi:10.1109/icip.2007.4379530

  15. Kharrazi M, Sencar HT, Memon N (2006) Performance study of common image steganography and steganalysis techniques. ELECTIM 15 (4):041104-041104-041116. doi:10.1117/1.2400672

  16. Liu Q, Sung AH, Qiao M (2011) Neighboring joint density-based JPEG steganalysis. ACM Trans Intell Syst Technol 2(2):1–16. doi:10.1145/1899412.1899420

    Article  Google Scholar 

  17. Mahmoudi-Aznaveh A, Mansouri A, Torkamani-Azar F, Eslami M (2009) Image quality measurement besides distortion type classifying. Opt Rev 16(1):30–34

    Article  Google Scholar 

  18. Mansouri A, Mahmoudi-Aznaveh A, Torkamani-Azar F, Jahanshahi J (2009) Image quality assessment using the singular value decomposition theorem. Opt Rev 16(2):49–53

    Article  Google Scholar 

  19. Narwaria M, Weisi L (2012) SVD-based quality metric for image and video using machine learning. Syst, Man, Cybern, Part B: Cybern, IEEE Trans 42(2):347–364. doi:10.1109/TSMCB.2011.2163391

    Article  Google Scholar 

  20. Nouri R, Mansouri A (2015) Blind image steganalysis based on reciprocal singular value curve. In: Machine Vision and Image Processing (MVIP), 2015 9th Iranian Conference on, 18-19 Nov. 2015. pp 124–127. doi:10.1109/IranianMVIP.2015.7397519

  21. Pevny T, Bas P, Fridrich J (2010) Steganalysis by subtractive pixel adjacency matrix. Inf Forensic Secur IEEE Trans 5(2):215–224. doi:10.1109/TIFS.2010.2045842

    Article  Google Scholar 

  22. Pevný T, Filler T, Bas P (2010) Using high-dimensional image models to perform highly undetectable steganography. In: Böhme R, Fong PL, Safavi-Naini R (eds) Information hiding, vol 6387. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 161–177. doi:10.1007/978-3-642-16435-4_13

    Google Scholar 

  23. Provos N, Honeyman P (2003) Hide and seek: an introduction to steganography. Secur Priv IEEE 1(3):32–44. doi:10.1109/MSECP.2003.1203220

    Article  Google Scholar 

  24. Qingxiao G, Jing D, Tieniu T (2011) An effective image steganalysis method based on neighborhood information of pixels. In: Image Processing (ICIP), 2011 18th IEEE International Conference on, 11–14 Sept:2721–2724. doi:10.1109/ICIP.2011.6116231

  25. Saad MA, Bovik AC, Charrier C (2010) A DCT statistics-based blind image quality index. Sig Process Lett IEEE 17(6):583–586

    Article  Google Scholar 

  26. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. Image Process IEEE Trans 21(8):3339–3352

    Article  MathSciNet  Google Scholar 

  27. Sang Q, Wu X, Li C, Bovik AC (2014) Blind image quality assessment using a reciprocal singular value curve. Signal Process Image Commun 29(10):1149–1157. doi:10.1016/j.image.2014.09.005

    Article  Google Scholar 

  28. Software. http://vsl.sourceforge.net

  29. Steganography Dataset. http://isis.poly.edu/~steganography/data/datasets.php

  30. UCID database. http://homepages.lboro.ac.uk/~cogs/datasets/ucid/ucid.html

  31. Westfeld A (2001) F5—a steganographic algorithm: high capacity despite better steganalysis. 4th International Workshop on Information Hiding, Springer-Verlag, pp 289–302

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Mansouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, R., Mansouri, A. Digital image steganalysis based on the reciprocal singular value curve. Multimed Tools Appl 76, 8745–8756 (2017). https://doi.org/10.1007/s11042-016-3507-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3507-y

Keywords

Navigation