Arcelli C, Baja GSd (1996) Skeletons of planar patterns. In: Kong TY, Rosenfeld A (eds) Topological algorithms for digital image processing, Machine Intell. and Patt. Rec., vol 19. North-Holland, pp 99–143
Atul S, Chaudhari ASC (2013) A study and review on fingerprint image enhancement and minutiae extraction. IOSR J Comput Eng 9(6):53–56. doi:10.9790/0661-0965356
Article
Google Scholar
Bai X, Latecki LJ (2007) Discrete skeleton evolution. In: Proceedings of the 6th international conference on energy minimization methods in computer vision and pattern recognition. Springer-Verlag, Berlin, Heidelberg, pp 362–374
Bai X, Latecki L, Wy Liu (2007) Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans Pattern Anal Mach Intell 29(3):449–462
Article
Google Scholar
Baja GSd (2006) Skeletonization of digital objects. In: Proceedings of the 11th Iberoamerican conference on progress in pattern recognition, image analysis and applications (CIARP06). Springer, DE, pp 1–13
Blum H (1967) A transformation for extracting new descriptors of shape. In: Models for the perception of speech and visual form, Proceedings of Meeting held in Boston, Nov. 1964. MIT Press, Cambridge, pp 362–380
Blum H, Nagel RN (1978) Shape description using weighted symmetric axis features. Pattern Recogn 10(3):167–180
Article
MATH
Google Scholar
Chippindale C, Taçon P (1998) The archaeology of rock-art. New directions in archaeology series. Cambridge University Press
Dinneen GP (1955) Programming pattern recognition. In: Proceedings of the March 1-3, 1955, Western Joint Comp. Conf., AFIPS ’55 (Western). ACM, NY, pp 94–100
Ho S, Dyer C (1984) Medial-axis based shape smoothing. Technical Report 557, University of Wisconsin-Madison Department of Computer Sciences
Howe NR (2004) Code implementations by Nicholas R. Howe., http://www.cs.smith.edu/nhowe/research/code/
Kirkpatrick D (1979) Efficient computation of continuous skeletons. In: Proceedings of the 20th annual symposium on foundations of computer science, 1979. IEEE, San Juan, pp 18–27
Kirsch RA, Cahn L, Ray C, Urban GH (1958) Experiments in processing pictorial information with a digital computer. In: Papers and Discussions Presented at the December 9-13, 1957, Eastern Joint Comp. Conf.: Computers with Deadlines to Meet. IRE-ACM-AIEE ’57 (Eastern). ACM, New York, pp 221–229
Krinidis S, Chatzis V (2009) A skeleton family generator via physics-based deformable models. IEEE Trans Image Process 18(1):1–11
MathSciNet
Article
Google Scholar
Krinidis S, Krinidis M (2013) Empirical mode decomposition on skeletonization pruning. Image Vis Comput 31(8):533–541
Article
Google Scholar
Latecki LJ, Lakämper R (1999) Polygon evolution by vertex deletion. In: Proceedings of the 2nd international conference on scale-space theories in computer vision. Springer, pp 398–409
Liu H, Wu Z, Hsu DF, Peterson BS, Xu D (2012) On the generation and pruning of skeletons using generalized voronoi diagrams. Pattern Recogn Lett 33 (16):2113–2119
Article
Google Scholar
Liu H, Wu ZH, Zhang X, Hsu DF (2013) A skeleton pruning algorithm based on information fusion. Pattern Recogn Lett 34(10):1138–1145
Article
Google Scholar
Montanari U (1968) A method for obtaining skeletons using a quasi-euclidean distance. J ACM (JACM) 15(4):600–624
Article
Google Scholar
Montanari U (1969) Continuous skeletons from digitized images. J ACM (JACM) 16(4):534–549
Article
MATH
Google Scholar
Ogniewicz RL, Ilg M (1992) Voronoi skeletons: Theory and applications. In: Proceedings of the IEEE Conf. on Comp. Vision and Patt. Rec. (CVPR), pp 63–69
Parker JR (2011) Algorithms for image processing and computer vision, 2nd edn. Wiley Publishing, Inc, Indianapolis
Google Scholar
Seidl M, Breiteneder C (2012) Automated petroglyph image segmentation with interactive classifier fusion. In: Proceedings of the 8th Indian conference on computer vision, graphics and image processing, ICVGIP ’12. ACM, New York, pp 66:1–66:8
Seidl M, Wieser E, Zeppelzauer M, Pinz A, Breiteneder C (2014) Graph-based similarity of petroglyphs. In: VISART ‘Where Computer Vision Meets Art’, ECCV’2014. Springer, Zürich
Seidl M, Wieser E, Alexander C (2015) Automated classification of petroglyphs. Digital Applications in Archaeology and Cultural Heritage
Shaked D, Bruckstein AM (1998) Pruning medial axes. Comput Vis Image Underst 69(2):156–169
Article
Google Scholar
Shen W, Bai X, Hu R, Wang H, Latecki L (2011) Skeleton growing and pruning with bending potential ratio. Pattern Recognit 44(2):196–209
Article
Google Scholar
Shen W, Bai X, Yang X, Latecki LJ (2013) Skeleton pruning as trade-off between skeleton simplicity and reconstruction error. Science China Inf Sci 56(4):1–14
Article
Google Scholar
Takaki R, Toriwaki J, Mizuno S, Izuhara R (2006) Shape analysis of petroglyphs in central asia. Forma 21:243–258
Google Scholar
Telea A (2012) Feature preserving smoothing of shapes using saliency skeletons. In: Vis. in Medicine and Life Sciences II. Springer, pp 153–170
Telea A, van Wijk JJ (2002) An augmented fast marching method for computing skeletons and centerlines. In: Proc. of the symposium on data visualisation 2002, eurographics ass., VISSYM ’02. Aire-la-Ville, Switzerland, pp 251–ff
Vincent L (1994) Morphological area openings and closings for grey-scale images. In: Shape in picture. Springer, pp 197–208
Yang X, Bai X, Yang X, Zeng L (2009) An efficient quick algorithm for computing stable skeletons. In: Proceedings of the 2nd international congress on image and signal processing (CISP’09), pp 1–5
Zhu Q, Wang X, Keogh E (2009) Augmenting the generalized hough transform to enable the mining of petroglyphs. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’09. ACM, New York, pp 1057–1066