Skip to main content
Log in

Analysis of the Kinetics of Isothermal Bainitic Transformation in Alloy Steels

  • Published:
Metal Science and Heat Treatment Aims and scope

Isothermal bainitic transformation is studied in commercial and experimental alloy steels of various compositions using dilatometry. The effect of the conditions of cooling to the temperature of isothermal quenching on the subsequent kinetics of the bainitic transformation is considered. The experimental kinetics of formation of bainite is described with the help of the Austin–Rickett (AR) equation. The temperature dependence of parameters n and ln (k) in the AR equation and their linear interrelationship are presented. It is shown that the dependences n = f [ln (k)] differ for steels of specific classes, and the difference may be associated with different stabilities of the supercooled austenite. It is shown that in a number of cases the kinetics of the isothermal bainitic transformation is describable adequately by the Kolmogorov–Johnson–Mehl–Avrami (KJMA) equation. The suggested differential equation generalizing the AR and KJMA equations makes it possible to describe the kinetics of formation of bainite the most accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. E. S. Davenport and E. C. Bain, “Transformation of austenite at constant subcritical temperatures,” Metall. Trans., 1, 3503 – 3530 (1970). https://doi.org/10.1007/BF03037892

    Article  Google Scholar 

  2. L. C. D. Fielding, “The bainite controversy,” Mater. Sci. Technol., 29(4), 383 – 399 (2013). https://doi.org/10.1179/1743284712Y.0000000157

    Article  CAS  Google Scholar 

  3. H. K. D. H. Bhadeshia, Bainite in Steels. Theory and Practice, CRC Press, USA (2015), 616 p.

    Google Scholar 

  4. E. Pereloma and D. V. Edmonds (eds.), Phase Transformations in Steels. Fundamentals and Diffusion-Controlled Transformations, Woodhead Publishing Ltd, UK (2012), 634 p.

  5. J. W. Christian, The Theory of Transformations in Metals and Alloys, Elsevier Ltd., UK (2002), 1168 p.

    Google Scholar 

  6. H. K. D. H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, Elsevier Ltd., UK (2017), 461 p.

    Google Scholar 

  7. R. F. Hehemann, K. R. Kinsman, and H. I. Aaronson, “A debate on the bainite reaction,” Metall. Mater. Trans. B, 3, 1077 – 1094 (1972). https://doi.org/10.1007/BF02642439

    Article  CAS  Google Scholar 

  8. B. L. Bramfitt and J. G. Speer, “A perspective on the morphology of bainite,” Metall. Mater. Trans. A, 21, 817 – 829 (1990). https://doi.org/10.1007/BF02656565

    Article  Google Scholar 

  9. O. Hajizad, A. Kumar, Z. Li, et al., “Influence of microstructure on mechanical properties of bainitic steels in railway applications,” Metals, 9(7), 778 (2019). https://doi.org/10.3390/met9070778

    Article  CAS  Google Scholar 

  10. M. N. Georgiev and T. V. Semenova, “Railroad rails from bainitic steel,” Metal Sci. Heat Treat., 60, 464 – 470 (2018). https://doi.org/10.1007/s11041-018-0302-6

    Article  CAS  Google Scholar 

  11. I. Yu. Pyshmintsev, A. O. Struin, A. M. Gervasyev, et al., “Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment,” Metallurgist, 60, 405 – 412 (2016). https://doi.org/10.1007/s11015-016-0306-7

    Article  CAS  Google Scholar 

  12. J. Yang, D. W. Kim, S. Lee, et al., “Effects of granular bainite and polygonal ferrite on yield point phenomenon in API X65 line-pipe steels,” Mater. Sci. Eng. A, 840, 143006 (2022). https://doi.org/10.1016/j.msea.2022.143006

    Article  CAS  Google Scholar 

  13. E. I. Khlusova, O. V. Sych, and V. V. Orlov, “Cold-resistant steels. Structure, properties, technologies,” Fiz. Met. Metalloved., 122(6), 621 – 657 (2021). https://doi.org/10.31857/S0015323021060048

  14. M. V. Maisuradze, Yu. V. Yudin, and D. I. Lebedev, “Thermal strengthening of large parts made from high-strength sparingly doped steel in air,” Steel Trans., 50, 356 – 362 (2020). https://doi.org/10.31857/S0015323021060048

  15. M. Madadi, M. Yeganeh, and M. Eskandari, “Nano-steels in the automotive industry,” in: Nanotechnology in the Automotive Industry, Elsevier Inc., UK (2022), pp. 287 – 313. https://doi.org/10.1016/B978-0-323-90524-4.00015-3

  16. R. Rana and S. B. Singh (eds.), Automotive Steels. Design, Metallurgy, Processing and Applications, Elsevier Ltd., UK (2017), 460 p.

  17. C. T. Broeck, H. Singh, and M. Hillebrecht, “Lightweight design for the future steel vehicle,” ATZ Worldwide, 114, 4 – 11 (2012). https://doi.org/10.1007/s38311-012-0203-z

    Article  Google Scholar 

  18. Y. Liu, H. Ye, Y. Yao, and L. Zhang, “Research on microstructure and properties of automobile body steel and its development trend,” IOP Conf. Ser., Mater. Sci. Eng., 382(2), 022045 (218). https://doi.org/10.1088/1757-899X/382/2/022045

  19. W. Song, M. Lei, M. Wan, and C. Huang, “Continuous cooling transformation behavior and bainite transformation kinetics of 23CrNi3Mo carburized steel,” Metals, 11(1), 48 (2021). https://doi.org/10.3390/met11010048

    Article  CAS  Google Scholar 

  20. M. Jiang, L.-N. Chen, J. He, et al., “Effect of controlled rolling _controlled cooling parameters on microstructure and mechanical properties of the novel pipeline steel,” Adv. Manuf., 2, 265 – 274 (2014). https://doi.org/10.1007/s40436-014-0084-z

    Article  CAS  Google Scholar 

  21. P. C. M. Rodrigues, E. V. Pereloma, and D. V. Sandoz. “Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling,” Mater. Sci. Eng. A, 283(1 – 2), 136 – 143 (2000). https://doi.org/10.1016/S0921-5093(99)00795-9

    Article  Google Scholar 

  22. S. D. Bhole and A. Friedman, “Steel wire patenting: thermal and metallurgical comparison between quenching in lead and quenching in a fluidised bed,” Int. Heat Treat. Surf. Eng., 4(4), 152 – 155 (2010). https://doi.org/10.1179/174951410X12712449937360

    Article  Google Scholar 

  23. V. Wang, B. Liu, Q. Pan, et al., “Effect of austempering on mechanical properties of Nb/V microalloyed bainitic bearing steel,” Crystals, 12, 1001 (2022). https://doi.org/10.3390/cryst12071001

    Article  CAS  Google Scholar 

  24. M. Carpio, J. Calvo, O. Garcia, et al., “Heat treatment design for a QP steel: Effect of partitioning temperature,” Metals, 11(7), 1136 (2021). https://doi.org/10.3390/met11071136

    Article  CAS  Google Scholar 

  25. Z. Babasafari, A. V. Pan, F. Pahlevani, et al., “Effects of austenitizing temperature, cooling rate and isothermal temperature on overall phase transformation characteristics in high carbon steel,” J. Mater. Res. Technol., 9(6), 15286 – 15297 (2020). https://doi.org/10.1016/j.jmrt.2020.10.071

    Article  CAS  Google Scholar 

  26. M. V. Maisuradze and M. A. Ryzhkov, “Improving the impact toughness of the HY-TUF steel by austempering,” AIP Conf. Proc., 2053, 049954 (2018). https://doi.org/10.1063/1.5084492

    Article  CAS  Google Scholar 

  27. M. V. Maisuradze and M. A. Ryzhkov, “Thermal stabilization of austenite during quenching and partitioning of austenite for automotive steels,” Metallurgist, 62, 337 – 347 (2018). https://doi.org/10.1007/s11015-018-0666-2

    Article  CAS  Google Scholar 

  28. M. J. Santofimia, F. G. Caballero, C. Capdevila, et al., “New model for the overall transformation kinetics of bainite, Part 1: the model,” Mater. Trans., 47(10), 2465 – 2472 (2006). https://doi.org/10.2320/matertrans.47.2465

    Article  CAS  Google Scholar 

  29. T. Zhang, H. Yu, Z. Li, S. Kou, et al., “Progress on effects of alloying elements on bainite formation and strength and toughness of high strength steel weld metal,” Mater. Res. Express, 8(3), 032002 (2021). https://doi.org/10.1088/2053-1591/abea58

    Article  CAS  Google Scholar 

  30. T. Sourmail and V. Smanio, “Influence of cobalt on bainite formation kinetics in 1 pct C steel,” Metall. Mater. Trans. A, 44, 1975 – 1978 (2013). https://doi.org/10.1007/s11661-013-1656-4

    Article  CAS  Google Scholar 

  31. M. Morawiec, A. Skowroneck, A. Koz3owska, et al., “Effect of prior martensite formation on the bainite transformation kinetics in high-strength 3% Mn multiphase steel,” J. Thermal Anal. Calor., 148, 1365 (2023). https://doi.org/10.1007/s10973-22-1729-

  32. Z. Babasafari, A. V. Pan, F. Pahlevani, et al., “Kinetics of bainite transformation in multiphase high carbon low-silicon steel with and without pre-existing martensite,” Metals, 12(11), 1969 (2022). https://doi.org/10.3390/met12111969

    Article  CAS  Google Scholar 

  33. G. Łukaszewicz, K. Wastak, E. K. Skołek, et al., “Influence of intermediate annealing treatment on the kinetics of bainitic transformation in X37CrMoV5-1 steel,” Materials, 14(16), 4411 (2021). https://doi.org/10.3390/ma14164411

    Article  CAS  Google Scholar 

  34. M. J. Starink, “Kinetic equations for diffusion-controlled precipitation reactions,” J. Mater. Sci., 32, 4061 – 4070 (1997). https://doi.org/10.1023/A:1018649823542

    Article  CAS  Google Scholar 

  35. J. C. Zhu, X. Sun, G. C. Barber, et al., “Bainite transformation-kinetics-microstructure characterization of austempered 4140 steel,” Metals, 10(2), 236 (2020). https://doi.org/10.3390/met10020236

    Article  CAS  Google Scholar 

  36. M. Avami, “Kinetics of phase change. I. General theory,” J. Chem. Phys., 7(12), 1103 – 1132 (1939). https://doi.org/10.1063/1.1750380

    Article  Google Scholar 

  37. J. Cai and R. Liu, “Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: Application to simulated and real kinetic conversion data,” J. Phys. Chem., 111(36), 10681 – 10686 (2007). https://doi.org/10.1021/jp0737092

    Article  CAS  Google Scholar 

  38. Yu. V. Yudin, M. V. Maisuradze, and A. A. Kuklina, “Describing the isothermal bainitic transformation in structural steels by a logistical function,” 47(3), 213 – 218 (2017). https://doi.org/10.3103/S0967091217030160

  39. T. A. Kop, J. Sietsma, and S. Van Der Zwaag, “Dilatometric analysis of phase transformations in hypo-eutectoid steels,” J. Mater. Sci., 36, 519 – 526 (2001). https://doi.org/10.1023/A:1004805402404

    Article  CAS  Google Scholar 

  40. M. V. Maisuradze, Yu. V. Yudin, and A. A. Kuklina, “Increase in impact strength during bainite structure formation in HY-TUF high-strength steel,” Metallurgist, 63, 849 – 859 (2019). https://doi.org/10.1007/s11015-019-00899-4

    Article  CAS  Google Scholar 

  41. M. V. Maisuradze, Yu. V. Yudin, and A. A. Kuklina, “Novel approach for analytical description of the isothermal bainite transformation in alloyed steels,” Mater. Perform. Charact., 8(2), 80 – 95 (2018). https://doi.org/10.1520/MPC20170168

    Article  Google Scholar 

  42. S. A. Khan and H. K. D. H. Bhadeshia, “The bainite transformation in chemically-heterogeneous 300M high-strength steel,” Metall. Trans. A, 21, 859 – 875 (1990). https://doi.org/10.1007/BF02656570

    Article  Google Scholar 

  43. A. A. Kuklina, M. V. Maisuradze, and Yu. V. Yudin, “Analytical description of the bainite transformation kinetics in steels 300M and D6AC,” Mater. Sci. Forum, 907, 31 – 37 (2017). https://doi.org/10.4028/www.scientific.net/MSF.907.31

    Article  Google Scholar 

Download references

The work has been financed by Grant No. 22-29-00106 of the Russian Scientific Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Maisuradze.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 15 – 25, August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maisuradze, M.V., Kuklina, A.A., Lebedev D. I., D.I. et al. Analysis of the Kinetics of Isothermal Bainitic Transformation in Alloy Steels. Met Sci Heat Treat 65, 474–484 (2023). https://doi.org/10.1007/s11041-023-00958-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00958-3

Key words

Navigation