Skip to main content

Advertisement

Log in

Structure and Phase Composition of Heat Treated Al – Zr Bimetal

  • ADDITIVE TECHNOLOGIES, POWDER AND COMPOSITE MATERIALS
  • Published:
Metal Science and Heat Treatment Aims and scope

Special features of structural and phase transformations occurring in annealing of an explosion-welded Al – Zr bimetal are considered. It is shown that heat treatment causes formation and growth of an intermetallic layer on the interface, which has a hardness of 9 GPa. The methods of microscopic x-ray spectrum analysis and of phase analysis with the use of synchrotron radiation are used to show that the intermetallic layer is represented by a ZrAl3 phase with a D023-type structure. The lattice constants of this phase vary gradually from the metal-intermetallic interfaces to the center of the layer. Quantum-chemical modeling by the method of density functional is used to show that the zirconium trialuminide is in the steadiest state at a certain distance from the interface due to the process of secondary recrystallization and the accompanying annihilation of crystal structure defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Yu. Yu. Emurlaeva, I. V. Ivanov, D. V. Lazurenko, et al., “On the texture and superstructure formation in Ti – TiAl3 – Al MIL composites,” Intermetallics, 135, 107231 (2021). https://doi.org/10.1016/j.intermet.2021.107231

    Article  CAS  Google Scholar 

  2. D. V. Lazurenko, I. A. Bataev, V. I. Mali, et al., “Synthesis of metal-intermetallic laminate (MIL) composites with modified Al3Ti structure and in situ synchrotron x-ray diffraction analysis of sintering process,” Mater. Des., 151, 8 – 16 (2018). https://doi.org/10.1016/j.matdes.2018.04.038

    Article  CAS  Google Scholar 

  3. D. V. Lazurenko, I. Y. Petrov, V. I. Mali, et al., “Ti – Al3Ti metal – intermetallic laminate (MIL) composite with a cubic titanium trialuminide stabilized with silver: Selection of fabrication regimes, structure and properties,” J. Alloys Compd., 916, 165480 (2022). https://doi.org/10.1016/j.jallcom.2022.165480

    Article  CAS  Google Scholar 

  4. D. V. Lazurenko, V. V. Lozanov, A. Stark, et al., “In situ synchrotron x-ray diffraction study of reaction routes in Ti – Al3Ti-based composites: The effect of transition metals on L12 structure stabilization,” J. Alloys Compd., 875, 160004 (2021). https://doi.org/10.1016/j.jallcom.2021.160004

    Article  CAS  Google Scholar 

  5. T. Shimozaki, T. Okino, M. Yamane, et al., “Effect of diffusion barrier and impurities in titanium on the growth rate of TiAl3 layer,” Defect and Diffusion Forum, 143 – 147, 591 – 596 (1997). https://doi.org/10.4028/www.scientific.net/ddf.143-147.591

    Article  Google Scholar 

  6. F. Foadian, M. Soltanieh, M. Adeli, and M. Etminanbakhsh, “The kinetics of TiAl3 formation in explosively welded Ti – Al multilayers during heat treatment,” Metall. Mater. Trans. B, 47, 2931 – 2937 (2016). https://doi.org/10.1007/s11663-016-0710-1

    Article  CAS  Google Scholar 

  7. N. Thiyaneshwaran, K. Sivaprasad, and B. Ravisankar, “Nucleation and growth of TiAl3 intermetallic phase in diffusion bonded Ti/Al Metal Intermetallic Laminate,” Sci. Rep., 8, 16797 (2018). https://doi.org/10.1038/s41598-018-35247-0

    Article  CAS  Google Scholar 

  8. Y. Zhao, J. Li, R. Qui, and H. Shi, “Growth characterization of intermetallic compound at the Ti/Al solid state interface,” Materials, 12(3), 1 – 11 (2019). https://doi.org/10.3390/ma12030472

    Article  CAS  Google Scholar 

  9. D. J. Harach and K. S. Vecchio, “Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air,” Metall. Mater. Trans. A, 32, 1493 – 1505 (2001). https://doi.org/10.1007/s11661-001-0237-0

    Article  Google Scholar 

  10. T. S. Ogneva, I. A. Bataev, and V. I. Mali, “Effect of sintering pressure and temperature on structure and properties of Ni Al metal-intermetallic composites produced by SPS,” Mater. Charact., 180, 111415 (2021). https://doi.org/10.1016/j.matchar.2021.111415

    Article  CAS  Google Scholar 

  11. Y. Wang and K. S. Vecchio, “Microstructure evolution in Fe-based-aluminide metallic-intermetallic laminate (MIL) composites,” Mater. Sci. Eng. A, 649, 325 – 337 (2016). https://doi.org/10.1016/j.msea.2015.10.019

    Article  CAS  Google Scholar 

  12. Y. Wang, S. Zhou, and K. S. Vecchio, “Annealing effects on the microstructure and properties of an Fe-based metallic-intermetallic laminate (MIL) composite,” Mater. Sci. Eng. A, 665, 47 – 58 (2016). https://doi.org/10.1016/j.msea.2016.04.03

    Article  CAS  Google Scholar 

  13. H. Wang, R. Kou, H. Yi, et al., “Mesoscale hetero-deformation induced (HDI) stress in FeAl-based metallic-intermetallic laminate (MIL) composites,” Acta Mater., 213, 116949 (2021). https://doi.org/10.1016/j.actamat.2021.116949

    Article  CAS  Google Scholar 

  14. Y.Wang and K. S. Vecchio, “Microstructure evolution in a martensitic 430 stainless steel-Al metallic-intermetallic laminate (MIL) composite,” Mater. Sci. Eng. A, 643, 72 – 85 (2015). https://doi.org/10.1016/j.msea.2015.07.014

    Article  CAS  Google Scholar 

  15. A. Macwan, X. Q. Jiang, C. Li, and D. L. Chen, “Effect of annealing on interface microstructures and tensile properties of rolled Al/Mg/Al tri-layer clad steels,” Mater. Sci. Eng. A, 587, 344 – 351 (2013). https://doi.org/10.1016/j.msea.2013.09.002

    Article  CAS  Google Scholar 

  16. Z. Chen, D. Wang, X. Cao, et al., “Influence of multi-pass rolling and subsequent annealing on the interface microstructure and mechanical properties of the explosive welding Mg/Al composite plates,” Mater. Sci. Eng. A, 723, 97 – 108 (2018). https://doi.org/10.1016/j.msea.2018.03.042

    Article  CAS  Google Scholar 

  17. Z. F. Li, J. Dong, X. Q. Zeng, et al., “Influence of strong static magnetic field on intermediate phase growth in Mg – Al diffusion couple,” J. Alloys Compd., 440, 132 – 136 (2007). https://doi.org/10.1016/j.jallcom.2006.09.032

    Article  CAS  Google Scholar 

  18. N. L. Glinka, The General Chemistry [in Russian], Khimiya, Leningrad (1980), 718 p.

  19. V. S. Srivastava, T. Singh, S. Ghosh Chowdhury, and V. Jindal, “Microstructural characteristics of accumulative roll-bonded Ni – Al-based metal-intermetallic laminate composite,” J. Mater. Eng. Perform., 21, 1912 – 1918 (2012). https://doi.org/10.1007/s11665-011-0114-y

  20. F. Takeda and T. Nakajima, “Preparation of Ti – Al gradient composite films by sputtering,” Thin Solid Films, 316, 68 – 72 (1998). https://doi.org/10.1016/S0040-6090(98)00391-5

    Article  CAS  Google Scholar 

  21. I. A. Bataev, A. A. Bataev, V. I. Mali, and D. V. Pavlikova, “Structure and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing,” Mater. Des., 35, 225 – 234 (2012). https://doi.org/10.1016/j.matdes.2011.09.030

    Article  CAS  Google Scholar 

  22. D. M. Fronczek, J. Wojewoda-Budka, R. Chulist, et al., “Structural properties of Ti/Al clads manufactured by explosive welding and annealing,” Mater. Des., 91, 80 – 89 (2016). https://doi.org/10.1016/j.matdes.2015.11.087

    Article  CAS  Google Scholar 

  23. H.-S. Ding, J.-M. Lee, B.-R. Lee, et al., “Processing and microstructure of TiNi SMA strips prepared by cold roll-bonding and annealing of multilayer,” Mater. Sci. Eng. A, 408, 182 – 189 (2005). https://doi.org/10.1016/j.msea.2005.07.055

    Article  CAS  Google Scholar 

  24. V. I. Lysak and S. V. Kuz’min, Explosive Welding [in Russian], Mashinostroenie, Moscow (2005), 543 p.

  25. M. Konieczny, R. Mola, P. Tomas, and M. Kopcial, “Processing, microstructure and properties of laminated Ni-intermetallic composites synthesised using Ni Sheets and Al foils,” Arch. Metall. Mater., 56, 693 – 702 (2011). https://doi.org/10.2478/v10172-011-0076-y

    Article  CAS  Google Scholar 

  26. L. M. Gurevich, V. G. Shmorgun, O. V. Slautin, and A. I. Bogdanov, Laminated Intermetallic Composites and Coatings [in Russian], Metallurgizdat, Moscow (2016), 346 p.

  27. A. A. Deribas, The Physics of Hardening and ExplosiveWelding [in Russian], Nauka, Novosibirsk (1980), 207 p.

  28. A. Mehta, J. Dickson, R. Newell, et al., “Interdiffusion and reaction between Al and Zr in the temperature range of 425 to 475°C,” J. Phase Equil. Diff., 40, 482 – 494 (2019). https://doi.org/10.1007/s11669-019-00729-9

    Article  CAS  Google Scholar 

  29. J. Dickson, L. Zhou, A. Pazy Puente, et al., “Interdiffusion and reaction between Zr and Al alloys from 425 to 625°C,” Intermetallics, 49, 154 – 162 (2014). https://doi.org/10.1016/j.intermet.2013.12.012

  30. G. V. Kidson and G. D. Miller, “A study of the interdiffusion of aluminum and zirconium,” J. Nucl. Mater., 12, 61 – 69 (1964). https://doi.org/10.1016/0022-3115(64)90108-4

    Article  CAS  Google Scholar 

  31. A. Laik, K. Bhanumurthy, and G. Kale, “Intermetallics in the Zr – Al diffusion zone,” Intermetallics, 12, 69 – 74 (2004). https://doi.org/10.1016/j.intermet.2003.09.002

    Article  CAS  Google Scholar 

  32. J. Maas, G. Bastin, F. van Lao, and R. Metselaar, “The texture in diffusion-grown layers of trialuminides MeAl3 (Me = Ti, V, Ta, Nb, Zr, Hf) and VNi3,” Int. J. Mater. Res., 74, 294 – 299 (1983). https://doi.org/10.1515/ijmr-1983-740506

    Article  CAS  Google Scholar 

  33. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., 77, 3865 – 3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  34. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953 – 17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  35. J. Enkovaara, C. Rostgaard, J. J. Mortensen, et al., “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” J. Phys., Cond. Matter, 22, 253202 (2010). https://doi.org/10.1088/0953-8984/22/25/253202

  36. A. Hjorth Larsen, J. J. Mortensen, J. Blomqvist, et al., “The atomic simulation environment – a Python library for working with atoms,” J. Phys., Cond. Matter, 29, 273002 (2017). https://doi.org/10.1088/1361-648X/aa680e

  37. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, 1564 – 1583 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  38. S. V. Kuz’min, V. I. Lysak, V. V. Rybin, and A. P. Peev, “Special features of plastic deformation of the metal of near-weld zone in explosive welding of dissimilar materials,” Izv. VolgGTU, 5, 4 – 11 (2010).

  39. B. A. Grinberg and M. A. Ivanov, “Interface inhomogeneities in explosive welding,” Fiz. Met. Metalloved., 113, 187 – 200 (2012).

    Google Scholar 

  40. V. I. Lysak, S. V. Kuz’min, A. V. Krokhalev, and B. A. Grinberg, “Structure of boundaries in composite materials obtained using explosive loading,” Fiz. Met. Metalloved., 114, 1026 – 1031 (2013).

  41. B. A. Grinberg, M. A. Ivanov, S. V. Kuz’min, and V. I. Lysak, Explosive Welding: Processes and Structures [in Russian], Innovatsionnoe Mashinostroenie, Moscow (2017), 236 p.

  42. I. A. Bataev, D. V. Lazurenko, S. Tanaka, et al., “High cooling rates and metastable phases at the interfaces of explosively welded materials,” Acta Mater., 135, 277 – 289 (2017). https://doi.org/10.1016/j.actamat.2017.06.038

    Article  CAS  Google Scholar 

  43. R. Addaschain, L. Addaschian, and R. E. Reed-Hill, Physical Metallurgy Principles, Cengage Learning (2009), 750 p.

  44. V. I. Anur’ev, A Handbook for Designer and Machine Builder [in Russian], Mashinostrienie, Moscow (2001), Vol. 1, 920 p.

  45. I. K. Kikoin, Tables of Physical Quantities, A Reference Book [in Russian], Atomizdat, Moscow (1976), 1008 p.

  46. A. Priyadarshi, M. Khvari, T. Subrotoet al., “On the governing fragmentation mechanism of primary intermetallics by induced cavitation,” Ultrason. Sonochemistry, 70, 105260 (2021). https://doi.org/10.1016/j.ultsonch.2020.105260

    Article  CAS  Google Scholar 

  47. J. Wang, S.-L. Shang, Y. Wang, et al., “First-principles calculations of binary Al compounds: Enthalpies of formation and elastic properties,” Calphad, 35, 562 – 573 (2011). https://doi.org/10.1016/j.calphad.2011.09.009

    Article  CAS  Google Scholar 

  48. M. Nakamura and K. Kimura, “Elastic constants of TiAl3 and ZrAl3 single crystals,” J. Mater. Sci., 26, 2208 – 2214 (1991). https://doi.org/10.1007/BF00549190

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Emurlaeva.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 49 – 58, July, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emurlaeva, Y.Y., Khomyakov, M.N., Aleksandrova, N.S. et al. Structure and Phase Composition of Heat Treated Al – Zr Bimetal. Met Sci Heat Treat 65, 441–449 (2023). https://doi.org/10.1007/s11041-023-00952-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00952-9

Keywords

Navigation