Skip to main content
Log in

Interdiffusion and Reaction Between Al and Zr in the Temperature Range of 425 to 475 °C

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Interdiffusion and reaction between Al and Zr was investigated as functions of Zr purity, temperature, and time, using Al versus Zr solid-to-solid diffusion couple annealed in the temperature range from 425 °C to 475 °C. All diffusion couples were observed to develop two intermetallic layers, i.e., Al3Zr and Al2Zr. The Al3Zr phase grew with planar morphology, while the Al2Zr phase developed a non-planar interfacial morphology. Growth rate and integrated interdiffusion coefficients were determined using Wagner’s approach for each phase. Purity of Zr had a significant effect on the development of Al3Zr and Al2Zr phases. Diffusion couples with low-purity Zr (i.e., 99.2%) exhibited a higher growth rate for the Al3Zr, at the expense of Al2Zr growth. Couples with low purity Zr also resulted in a higher degree of non-planarity for Al2Zr phase. In general, degree of non-planarity increased with an increase in anneal time, while it decreased with an increase in temperature. Non-planar morphology was simulated based on 3-D anisotropic diffusion using diffusivity tensor (quadric), and needle-like growth, similar to that observed by experiments were simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.E. Knipling, D.C. Dunand, and D.N. Seidman, Precipitation Evolution in Al–Zr and Al–Zr–Ti Alloys During Aging at 450–600 °C, Acta Mater., 2008, 56(6), p 1182-1195

    Article  Google Scholar 

  2. K.E. Knipling, D.C. Dunand, and D.N. Seidman, Precipitation Evolution in Al–Zr and Al–Zr–Ti Alloys During Isothermal Aging at 375–425 °C, Acta Mater., 2008, 56(1), p 114-127

    Article  Google Scholar 

  3. K.E. Knipling et al., Precipitation Evolution in Al–0.1 Sc, Al–0.1 Zr and Al–0.1 Sc–0.1 Zr (at.%) Alloys During Isochronal Aging, Acta Mater., 2010, 58(15), p 5184-5195

    Article  Google Scholar 

  4. P.H.L. Souza, C.A.S. de Oliveira, and J.M. do Vale Quaresma, Precipitation Hardening in Dilute Al–Zr Alloys, J. Mater. Res. Technol., 2018, 7(1), p 66-72

    Article  Google Scholar 

  5. A. Mehta et al., Microstructural Characterization of AA6061 Versus AA6061 HIP Bonded Cladding-Cladding Interface, J. Phase Equilib. Diffus., 2018, 39(2), p 246-254

    Article  Google Scholar 

  6. R. Newell et al., Interdiffusion, reactions, and phase transformations observed during fabrication of low enriched uranium monolithic fuel system for research and test reactors. in Defect and Diffusion Forum (2018). Trans Tech Publ

  7. R. Newell et al., Relating diffusion couple experiment results to observed as-fabricated microstructures in low-enriched U-10wt.% Mo monolithic fuel plates. in Defect and Diffusion Forum (2017). Trans Tech Publ

  8. D.D. Keiser et al., High-Density, Low-Enriched Uranium Fuel for Nuclear Research Reactors, JOM, 2003, 55(9), p 55-58

    Article  Google Scholar 

  9. R. Newell et al., Mechanical Properties Examined by Nanoindentation for Selected Phases Relevant to the Development of Monolithic Uranium-Molybdenum Metallic Fuels, J. Nucl. Mater., 2017, 487, p 443-452

    Article  ADS  Google Scholar 

  10. A. Mehta et al., Phase Transformations and Microstructural Development in the U-10 Wt Pct Mo Alloy with Varying Zr Contents After Heat Treatments Relevant to the Monolithic Fuel Plate Fabrication Process, Metall. Mater. Trans. A, 2019, 50, p 72-96

    Article  Google Scholar 

  11. J. Dickson et al., Interdiffusion and Reaction Between Zr and Al Alloys from 425° to 625 °C, Intermetallics, 2014, 49, p 154-162

    Article  Google Scholar 

  12. G. Kidson and G. Miller, A Study of the Interdiffusion of Aluminum and Zirconium, J. Nucl. Mater., 1964, 12(1), p 61-69

    Article  ADS  Google Scholar 

  13. A. Laik, K. Bhanumurthy, and G. Kale, Intermetallics in the Zr–Al Diffusion Zone, Intermetallics, 2004, 12(1), p 69-74

    Article  Google Scholar 

  14. J. Morral et al., Three Types of Planar Boundaries in Multiphase Diffusion Couples, Scr. Mater., 1996, 34(11), p 1661-1666

    Article  Google Scholar 

  15. J. Morral, X. Qiao, and C. Jin, Microstructure in diffusion couples. Understanding Microstructure: Key to Advances in Materials (1996), pp. 37–40

  16. W.C. Johnson, On the Inapplicability of Gibbs Phase Rule to Coherent Solids, Metall. Trans. A, 1987, 18(6), p 1093-1097

    Article  Google Scholar 

  17. D. Borivent, B. Billia, and J. Paret, Anomalous Growth of Ni3Si2 in Bulk Ni/Si Interdiffusion, J. Appl. Phys., 2008, 104(1), p 013523

    Article  ADS  Google Scholar 

  18. P. Tortorici and M. Dayananda, Diffusion Structures in Mo vs Si Solid-Solid Diffusion Couples, Scr. Mater., 1998, 38(12), p 1863-1869

    Article  Google Scholar 

  19. A. Mostafa and M. Medraj, On the Atomic Interdiffusion in Mg–{Ce, Nd, Zn} and Zn–{Ce, Nd} Binary Systems, J. Mater. Res., 2014, 29(13), p 1463-1479

    Article  ADS  Google Scholar 

  20. S. Bhagavantam and P. Pantulu. Generalized symmetry and Neumann’s principle. in Proceedings of the Indian Academy of Sciences-Section A (Springer, 1967)

  21. K. Bouche, F. Barbier, and A. Coulet, Intermetallic Compound Layer Growth Between Solid Iron and Molten Aluminium, Mater. Sci. Eng. A, 1998, 249(1–2), p 167-175

    Article  Google Scholar 

  22. P. Tortorici and M. Dayananda, Growth of Silicides and Interdiffusion in the Mo–Si System, Metall. Mater. Trans. A, 1999, 30(3), p 545-550

    Article  Google Scholar 

  23. S. Prasad and A. Paul, Growth Mechanism of Phases by Interdiffusion and Atomic Mechanism of Diffusion in the Molybdenum–Silicon System, Intermetallics, 2011, 19(8), p 1191-1200

    Article  Google Scholar 

  24. W.-J. Cheng and C.-J. Wang, Growth of Intermetallic Layer in the Aluminide Mild Steel During Hot-Dipping, Surf. Coat. Technol., 2009, 204(6–7), p 824-828

    Article  ADS  Google Scholar 

  25. T. Heumann and N. Dittrich, Structure Character of the Fe2Al5 Intermetallics Compound in Hot Dip Aluminizing Process, Z. Metallk., 1959, 50, p 617-623

    Google Scholar 

  26. A. Bouayad et al., Kinetic Interactions Between Solid Iron and Molten Aluminium, Mater. Sci. Eng., A, 2003, 363(1–2), p 53-61

    Article  Google Scholar 

  27. S. Chen et al., Nanoscale Structures of the Interfacial Reaction Layers Between Molten Aluminium and Solid Steel Based on Thermophysical Simulations, J. Alloy. Compd., 2018, 739, p 184-189

    Article  Google Scholar 

  28. W.-J. Cheng and C.-J. Wang, Study of Microstructure and Phase Evolution of Hot-Dipped Aluminide Mild Steel During High-Temperature Diffusion Using Electron Backscatter Diffraction, Appl. Surf. Sci., 2011, 257(10), p 4663-4668

    Article  ADS  Google Scholar 

  29. V. Yeremenko, Y.V. Natanzon, and V.I. Dybkov, The Effect of Dissolution on the Growth of the Fe2Al5 Interlayer in the Solid Iron-Liquid Aluminium System, J. Mater. Sci., 1981, 16(7), p 1748-1756

    Article  ADS  Google Scholar 

  30. J.H. Gülpen, Reactive Phase Formation in the Ni-Si System, Eindhoven University of Technology, Eindhoven, 1995

    Google Scholar 

  31. K. Tu et al., Intermetallic Compound Formation in Thin-Film and in Bulk Samples of the Ni–Si Binary System, J. Appl. Phys., 1983, 54(2), p 758-763

    Article  ADS  Google Scholar 

  32. D. Borivent, J. Paret, and B. Billia, Reactive Interdiffusion in the Binary System Ni–Si: Morphology of the Ni3Si2 Phase, J. Phase Equilib. Diffus., 2006, 27(6), p 561-565

    Article  Google Scholar 

  33. J.H. Gülpen, A.A. Kodentsov, and F.J. van Loo, Growth of Silicides in Ni-Si and Ni-SiC Bulk Diffusion Couples, Z. Metallkd., 1995, 86(8), p 530-539

    Google Scholar 

  34. J. Gülpen, A. Kodentsov, and F. Van Loo. The Growth of Silicides in Ni-Si and Ni-SiC Diffusion Couples, in Materials Science Forum (1994). Trans Tech Publ

  35. C. Wagner, The Evaluation of Data Obtained with Diffusion Couples of Binary Single-Phase and Multiphase Systems, Acta Metall., 1969, 17(2), p 99-107

    Article  Google Scholar 

  36. M.A. Dayananda, Average Effective Interdiffusion Coefficients in Binary and Multicomponent Alloys. in Defect and Diffusion Forum (1993). Trans Tech Publ.

  37. M. Dayananda and C. Kim, Zero-Flux Planes and Flux Reversals in Cu–Ni–Zn Diffusion Couples, Metall. Mater. Trans. A, 1979, 10(9), p 1333-1339

    Article  ADS  Google Scholar 

  38. C. Matano, On the Relation Between the Diffusion-Coefficients and Concentrations of Solid Metals (The Nickel–Copper System), Jpn. J. Phys., 1933, 8(3), p 109-113

    Google Scholar 

  39. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, Oxford, 1987

    MATH  Google Scholar 

  40. D.K. Jones, Chapter 3—Gaussian Modeling of the Diffusion Signal, in Diffusion MRI, ed. by H. Johansen-Berg, and T.E.J. Behrens. (Academic Press, London, 2009), pp. 37–54.

  41. S.K. Das et al., Investigation of Anisotropic Diffusion Behavior of Zn in hcp Mg and Interdiffusion Coefficients of Intermediate Phases in the Mg–Zn System, Calphad, 2013, 42, p 51-58

    Article  Google Scholar 

  42. C. Alcock, V. Itkin, and M. Horrigan, Vapour Pressure Equations for the Metallic Elements: 298–2500K, Can. Metall. Q., 1984, 23(3), p 309-313

    Article  Google Scholar 

  43. W.-C. Hu et al., First-Principles Study of Structural and Electronic Properties of C14-type Laves Phase Al2Zr and Al2Hf, Comput. Mater. Sci., 2014, 83, p 27-34

    Article  Google Scholar 

  44. G. Ghosh and M. Asta, First-Principles Calculation of Structural Energetics of Al-TM (TM = Ti, Zr, Hf) Intermetallics, Acta Mater., 2005, 53(11), p 3225-3252

    Article  Google Scholar 

  45. H. Hu et al., The Structural Stability, Mechanical Properties and Stacking Fault Energy of Al3Zr Precipitates in Al-Cu-Zr Alloys: HRTEM Observations and First-Principles Calculations, J. Alloy. Compd., 2016, 681, p 96-108

    Article  Google Scholar 

  46. M. Karpets et al., The Influence of Zr Alloying on the Structure and Properties of Al3Ti, Intermetallics, 2003, 11(3), p 241-249

    Article  Google Scholar 

  47. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Vol 155, Springer, Berlin, 2007

    Book  Google Scholar 

Download references

Acknowledgment

This work was supported by the U.S. Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), National Nuclear Security Administration, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongho Sohn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, A., Dickson, J., Newell, R. et al. Interdiffusion and Reaction Between Al and Zr in the Temperature Range of 425 to 475 °C. J. Phase Equilib. Diffus. 40, 482–494 (2019). https://doi.org/10.1007/s11669-019-00729-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-019-00729-9

Keywords

Navigation