Skip to main content
Log in

Investigation of the Effects of Overlapping Passes on Friction Stir Processed Aluminum Alloy 5083

  • ALUMINUM AND ALUMINUM ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of the number of passes during friction stir processing on the structure and properties of the surface layers of aluminum alloy 5083 is investigated. The alloy is processed by the FSP method with one, two and four passes, after which the tensile strength, the elongation under static tension, the impact energy during dynamic bending and the microhardness are determined. After a single-pass FSP, a significant increase in the elongation of the material is observed. However, with increase in the number of passes, its plasticity decreases slightly, remaining above the initial value. It is shown that after FSP, the microhardness of the alloy increases, and the tensile strength and the impact energy decrease, and these changes become more significant with increase in the number of passes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. M. Alishavandi, M. Ebadi, and A. H. Kokabi, “Optimization of parameters for the friction stir processing and welding of AA1050 aluminum alloy,” Iran. J. Mater. Sci. Eng., 18(2), 1 – 11 (2021).

    Google Scholar 

  2. B. Singh, P. Singhal, and K. K. Saxena, “Effect of transverse speed on mechanical and microstructural properties of friction stir welded aluminium AA2024-T351,” Adv. Mater. Proc. Technol., 6(3), 519 – 529 (2020).

    Google Scholar 

  3. S. Yu. Kondrat’ev and O. V. Shvetsov, “Effect of high-temperature heating on the structure and properties of aluminum alloys in the production of drill pipes,” Met. Sci. Heat Treat., 55(3 – 4), 191 – 196 (2013).

  4. S. Yu. Kondrat’ev, O. G. Zotov, and O. V. Shvetsov, “Structural stability and variation of properties of aluminum alloys D16 and 1953 in production and operation of drill pipes,” Met. Sci. Heat Treat., 55(9 – 10), 526 – 532 (2014).

  5. S. Yu. Kondrat’ev and O. V. Shvetsov, “Technological and operational features of drill pipes from aluminum alloys 2024 and 1953,” Met. Sci. Heat Treat., 60(1 – 2), 32 – 38 (2018).

  6. A. N. Chaudhari, “Welding behaviour of duplex stainless steel AISI 2205: A review,” Mater. Today, Proc., 18, 2731 – 2737 (2019).

    Article  CAS  Google Scholar 

  7. D. Varshney and K. Kumar, “Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization,” Ain Shams Eng. J., 12(1), 1143 – 1152 (2021).

    Article  Google Scholar 

  8. S. Gurusamy, S. Sarkar, and S. Mitra, “An experimental analysis of single pass cutting of aluminium 5083 alloy in different corner angles through WEDM,” Int. J. Mach. Mach. Mater, 13, 262 – 275 (2013).

    Google Scholar 

  9. L. Singh, B. Singh, and K. K. Saxena, “Manufacturing techniques for metal matrix composites (MMC): an overview,” Adv. Mater. Proc. Technol., 6(2), 441 – 457 (2020).

    Google Scholar 

  10. V. Kumar, “Evaluation of EDM characteristics of synthesised AA2024-2&3 wt% SiO2 metal matrix nanocomposite (MMNC),” Mater. Today, Proc., 26(2), P. 1449 – 1454 (2020).

    Article  CAS  Google Scholar 

  11. P. Sonia, J. K. Jain, and K. K. Saxena, “Influence of severe metal forming processes on microstructure and mechanical properties of Mg alloys,” Adv. Mater. Proc. Technol., 6, 1 – 24 (2020).

    Google Scholar 

  12. R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mater. Sci. Eng. R, 50(1), 1 – 78 (2005).

    Article  Google Scholar 

  13. Z. Y. Ma, “Effect of friction stir processing on the kinetics of superplastic deformation in an Al – Mg – Zr alloy,” Metall. Mater. Trans. A, 36(6), 1447 – 1458 (2005).

    Article  Google Scholar 

  14. S. Yu. Kondrat’ev, Yu. N. Morozova, Yu. A. Golubev, et al., “Microstructure and mechanical properties of welds of Al – Mg – Si alloys after different modes of impulse friction stir welding,” Met. Sci. Heat Treat., 59(11 – 12), 697(702 (2018).

  15. R. Nandan, T. Deb Roy, and H. K. D. H. Bhadeshia, “Recent advances in friction-stir welding — Process, weldment structure and properties,” Prog. Mater. Sci., 53(6), 980 – 1023 (2008).

  16. Z. Y. Ma, “Friction stir processing technology: A review,” Metall. Mater. Trans. A, 39(3), 642 – 658 (2008).

    Article  Google Scholar 

  17. K. Elangovan, V. Balasubramanian, and M. Valliappan, “Effect of tool pin profile and tool rotational speed on mechanical properties of friction stir welded AA6061 aluminium alloy,” Mater. Manuf. Process., 23(3), 251 – 260 (2008).

    Article  CAS  Google Scholar 

  18. K. J. Al-Fadhalah, A. I. Almazrouee, and A. S. Aloraier, “Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063,” Mater. Des., 53, 550 – 560 (2014).

    Article  CAS  Google Scholar 

  19. D. Yadav and R. Bauri, “Effect of friction stir processing on microstructure and mechanical properties of aluminium,” Mater. Sci. Eng. A, 539, 85 – 92 (2012).

    Article  CAS  Google Scholar 

  20. H. Zhao, “Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy,” Mater. Sci. Eng., 751, 70 – 79 (2019).

    Article  CAS  Google Scholar 

  21. T. H. Sibisi, “Characterisation of aluminium Ni – 40Fe – 10Ti fabricated by friction stir processing,” Adv. Mater. Proc. Technol. (2021), in Press. https://doi.org/10.1080/2374068X.2021.1939553

  22. V. K. Jain, M. K. Yadav, A. Saxena, et al. “Effect of tool rotational speed on microstructure and mechanical properties of friction stir processed AA5083/Fe–Al in-situ composite,” Mater. Today, Proc., 46(15), 6496 – 6500 (2021).

    Article  CAS  Google Scholar 

  23. M. M. Ahmed, S. Ataya, Seleman El-Sayed, et al., “Heat input and mechanical properties investigation of Friction Stir Welded AA5083/AA5754 and AA5083/AA7020,” Metals, 11(1), 68 (2021).

  24. M. F. Makhtar, A. Ismail, I. M. Ikram et al., “An experimental study on friction stir welding of AA5083 tee lap joints,” in: Advanced Engineering for Processes and Technologies II (2021), pp. 279 – 286.

    Article  Google Scholar 

  25. S. Pradeep, V. K. S. Jain, S. Muthukumaran, and R. Kumar, “Microstructure and texture evolution during multi-pass friction stir processed AA5083,” Mater. Lett., 288, 129382 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 28 – 32, July, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Yahya, M.M., Singh, B. et al. Investigation of the Effects of Overlapping Passes on Friction Stir Processed Aluminum Alloy 5083. Met Sci Heat Treat 65, 421–425 (2023). https://doi.org/10.1007/s11041-023-00949-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00949-4

Keywords

Navigation