Skip to main content
Log in

Effect of Heat Treatment on Fatigue Strength and Frequency Stability of Tool Steel 6KhS

  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of heat treatment on the fatigue processes developing in tool steel 6KhS loaded by a “soft” scheme of cantilever bending of flat specimens is studied. The fatigue limit and the cyclic endurance are determined. The frequency characteristics and the dynamics of the frequency stability in tests of steel specimens at a load close to the fatigue limit are presented. The fatigue resistance of the steel after low-temperature tempering is shown to be highly scattered. The steel exhibits the highest frequency stability after high-temperature tempering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. V. F. Lavtent’ev and S. A. Korableva, Fatigue of Metals [in Russian], Nauka, Moscow (2015), 479 p.

  2. H. Mughrabi and H.-J. Christ, “Cyclic deformation and fatigue of selected ferritic and austenitic steels; specific aspects,” ISIJ Int., 37(12), 1154 – 1169 (1997).

    Article  CAS  Google Scholar 

  3. V. E. Gromov, Yu. F. Ivanov, S. V. Vorob’ev, and S. V. Konovalov, Fatigue of Steels Modified by High Intensity Electron Beams, Cambridge (2015), 272 p.

  4. L. M. Shkol’nik, Methods of Fatigue Tests [in Russian], Metallurgiya, Moscow (1978), 304 p.

  5. I. V. Gadolina, N. A. Makhutov, and A. V. Erpalov, “Varied approaches to loading assessment in fatigue studies,” Int. J. Fatigue, 144, 106035 (2021).

    Article  CAS  Google Scholar 

  6. S. Suresh, Fatigue of Metals, Cambridge University Press, Cambridge (2006), 701 p.

    Google Scholar 

  7. V. V. Myl’nikov, O. V. Kondrashkin, D. I. Shetulov, et al., “Fatigue resistance changes of structural steels at different load spectra,” Steel Trans., 49(10), 678 – 682 (2019).

  8. V. T. Troshchenko, L. A. Khamaza, V. V. Pokrovsky, et al., Cyclic Deformation and Fatigue of Metals, Esevier, Amsterdam (1993), 500 p.

    Google Scholar 

  9. S. A. Golovin and I. V. Tikhonova, “Temperature dependence of internal friction and properties of deformed low-carbon iron alloys,” Deform. Razrush. Mater., No. 7, 16 – 21 (2013).

  10. S. A. Golovin and A. G. Petrushina, “Temperature spectrum of internal friction of cast irons,” Izv. Vysh. Uchebn. Zaved., Chern. Metall., No. 9, 51 – 54 (2009).

  11. D. McClaflin and and A. Fatemi, “Torsional deformation and fatigue of hardened steel inclusion mean stress and stress gradient effects,” Int. J. Fatigue, 26(7), 773 – 784 (2004).

  12. I. S. Golovin, A. S. Bychkova, A. V. Mikhailovskaya, and S. V. Dobatkin, “Contribution of phase and structural transformations in multicomponent Al – Mg alloys into linear and nonlinear mechanisms of elasticity,” Fiz. Met. Metalloved., 115(2), 204 (2014).

    CAS  Google Scholar 

  13. V. K. Kardashev, K. V. Sapozhnikov, V. I. Betekhtin, et al., “Internal friction, Youngs’s modulus, and electrical resistivity of submicrocrystalline titanium,” Phys. Solid State, 59(12), 2381 – 2386 (2017).

    Article  CAS  Google Scholar 

  14. M. S. Blanter, I. S. Golovin, H. Neuhäuser, and H. R. Sinning, “Internal friction in metallic materials,” Springer Ser. Mater. Sci., 90, 1 – 535 (2007).

    Article  Google Scholar 

  15. V. V. Stolyarov, “Inelasticity of ultrafine-grained metals,” Izv. Vysh. Uchebn. Zaved., Chern. Metall., No. 1, 151 – 154 (2010).

  16. O. N. Romaniv, L. P. Laz’ko, and A. S. Krys’kiv, “Relationship of internal friction to the fatigue life of patented steel wire,” Mater. Sci., 19, 522 – 527 (1984). https://doi.org/10.1007/BF00722120

  17. V. V. Myl’nikov and D. I. Shetulov, “Facility for fatigue testing, Patent 2781466 RU,” Byull. Izobr. Polezn. Modeli, No. 29 (2022), appl. 14.09.2021, publ. 12.10.2022.

  18. V. V. Mylnikov, “Effect of loading frequency on fatigue of structural materials,” Nauka Tekh., 18(5), 427 – 435 (2019).

    Article  Google Scholar 

  19. V. S. Biront, The Theory of Treatment of Metals. Quenching, Aging and Tempering [in Russian], SFU ITsMiZ, Krasnoyarsk (2007), 172 p.

  20. V. V. Myl’nikov, D. I. Shetulov, and E. A. Chernyshov, “Investigation into the surface damage of pure metals allowing for the cyclic loading frequency,” Russ. J. Non-Ferr. Met., 54(3), 229 – 233 (2013).

  21. D. I. Shetulov, “About assessment of fatigue resistance of surface anomalous layers,” Fiz.-Khim. Mekh. Mater., No. 6, 117 (1984).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Myl’nikov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 22 – 27, July, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myl’nikov, V.V., Dmitriev, E.A. & Shetulov, D.I. Effect of Heat Treatment on Fatigue Strength and Frequency Stability of Tool Steel 6KhS. Met Sci Heat Treat 65, 415–420 (2023). https://doi.org/10.1007/s11041-023-00946-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00946-7

Keywords

Navigation