Skip to main content
Log in

Experimental Study of Slurry Erosion of Ni-Hard Cast Iron and Prediction of Wear of Materials with the Use of Artificial Neural Network (ANN)

  • Published:
Metal Science and Heat Treatment Aims and scope

The wear resistance of Ni-Hard alloyed cast iron under slurry erosion is studied. An attempt to predict the erosion wear of materials with the help of an artificial neural network (ANN) is made based on the experimental data on the wear of a slurry pot tester under different operating conditions. The ANN model for predicting the erosion wear of materials is proposed, which has been shown to be highly accurate. The model will allow choosing materials that satisfy the specific performance characteristics without conducting long-term tests under various operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. C. Wilson, G. R. Addie, A. Sellgren, and R. Clift, “Centrifugal Pumps,” in: Slurry Transport Using Centrifugal Pumps, Springer, Boston, MA(2006), pp. 190 – 226.

  2. M. A. Al-Bukhaiti, S. M. Ahmed, F. M. F. Badran, and K. M. Emara, “Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron,” Wear, 262(9 – 10), 1187 – 1198 (2007).

    Article  CAS  Google Scholar 

  3. L. Haviez, T. Rosario, Mohamad El Youssef, et al., “Semi-physical neural network model for fretting wear estimation,” JIFS, 28(4), 1745 – 1753 (2015).

  4. D. Li, R. Lv, G. Si, and Y. You, “Hybrid neural network-based prediction model for tribological properties of polyamide6-based friction materials,” Polym. Compos., 38(8), 1705 – 1711 (2017).

    Article  CAS  Google Scholar 

  5. K. Velten, R. Reinicke, and K. Friedrich, “Wear volume prediction with artificial neural networks,” Tribol. Int., 33(10), 731 – 736 (2000).

    Article  Google Scholar 

  6. S. P. Jones, R. Jansen, and R. L. Fusaro, “Preliminary investigation of neural network techniques to predict tribological properties,” Tribol. Trans., 40(2), 312 – 320 (1997).

    Article  CAS  Google Scholar 

  7. L. Frangu and R. Minodora, “Artificial neural networks applications in Tribology—a survey,” in: 2001 NATO Advanced Study Institute on Neural Networks for Instrumentation, Measurement, and Related Industrial Applications: Study Cases (2001), pp. 35 – 42.

    Google Scholar 

  8. T. Kolodziejczyk, R. Toscano, S. Fouvry, and G. Morales-Espejel, “Artificial intelligence as efficient technique for ball bearing fretting wear damage prediction,” Wear, 268(1 – 2), 309 – 315 (2010).

    Article  CAS  Google Scholar 

  9. S. Anand Kumar, R. Ganesh Sundara Raman, T. S. N. Sankara Narayanan, and R. Gnanamoorthy, “”Prediction of fretting wear behavior of surface mechanical attrition treated Ti – 6Al – 4V using artificial neural network,” Mater. Des., 49, 992 – 999 (2013).

  10. R. Quiza, L. Figueira, and J. Paulo Davim, “Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel,” Int. J. Adv. Manuf. Technol., 37(7), 641 – 648 (2008).

  11. J. Zhu, Y. Shi, X. Feng, et al., “Prediction on tribological properties of carbon fiber and TiO2 synergistic reinforced polytetrafluoroethylene composites with artificial neural networks,” Mater. Des., 30(4), 1042 – 1049 (2009).

    Article  CAS  Google Scholar 

  12. L. A. Gyurova and K. Friedrich, “Artificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide composites,” Tribol. Int., 44(5), 603 – 609 (2011).

    Article  CAS  Google Scholar 

  13. S. D. Saravanan and M. Senthilkumar, “Prediction of tribological behavior of rice husk ash reinforced aluminum alloy matrix composites using artificial neural network,” Russ. J. Non-Ferr. Met., 56(1), 97 – 106 (2015).

    Article  Google Scholar 

  14. I. A. El-Sonbaty, U. A. Khashaba, A. I. Selmy, and A. I. Ali, “Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach,” J. Mater. Process. Technol., 200(1 – 3), 271 – 278 (2008).

    Article  CAS  Google Scholar 

  15. B. Dhanasekar and B. Ramamoorthy, “Restoration of blurred images for surface roughness evaluation using machine vision,” Tribol. Int., 43(1 – 2), 268 – 276 (2010).

    Article  Google Scholar 

  16. D. Aleksendriæ and D. C. Barton, “Neural network prediction of disc brake performance,” Tribol. Int., 42(7), 1074 – 1080 (2009).

    Article  Google Scholar 

  17. A. Senatore, V. D’Agostino, R. Di Giuda, and V. Petrone, “Experimental investigation and neural network prediction of brakes and clutch material frictional behavior considering the sliding acceleration influence,” Tribol. Int., 44(10), 1199 – 1207 (2011).

    Article  CAS  Google Scholar 

  18. J. Wang, Y. Ma, L. Zhang, et al., “Deep learning for smart manufacturing: Methods and applications,” J. Manuf. Syst., 48, 144 – 156 (2018).

    Article  Google Scholar 

  19. K. T. Butler,W. Davies, H. Cartwright, et al., “Machine learning for molecular and materials science,” Nature, 559(7715), 547 – 555 (2018).

    Article  CAS  Google Scholar 

  20. H. Bhadeshia, “Neural networks in materials science,” ISIJ Int., 39(10), 966 – 979 (1999).

    Article  CAS  Google Scholar 

  21. W. Sha and K. L. Edwards, “The use of artificial neural networks in materials science based research,” Mater. Des., 28(6), 1747 – 1752 (2007).

    Article  CAS  Google Scholar 

  22. J. Raeder, D. Larson, W. Li, et al., “Open GGCM simulations for the THEMIS mission,” Space Sci. Rev., 141(1), 535 – 555 (2008).

    Article  Google Scholar 

  23. G. R. Desale, B. K. Gandhi, and S. C. Jain, “Improvement in the design of a pot tester to simulate erosion wear due to solid-liquid mixture,” Wear, 259(1 – 6), 196 – 202 (2005).

    Article  CAS  Google Scholar 

  24. G. R. Desale, B. K. Gandhi, and S. C. Jain, ”Slurry erosion of ductile materials under normal impact condition,” Wear, 264(3 – 4), 322 – 330 (2008).

    Article  CAS  Google Scholar 

  25. G. R. Desale, B. K. Gandhi, and S. C. Jain, “Particle size effects on the slurry erosion of aluminum alloy (AA6063),” Wear, 266(11 – 12), 1066 – 1071 (2009).

    Article  CAS  Google Scholar 

  26. G. R. Desale, B. K. Gandhi, and S. C. Jain, “Development of correlations for predicting the slurry erosion of ductile materials,” J. Tribol., 133(3), 031603 (2011).

    Article  Google Scholar 

  27. P. P. Shitole, S. H. Gawande, G. R. Desale, and B. D. Nandre, “Effect of impacting particle kinetic energy on slurry erosion wear,” J. Bio TriboCorros., 1(4), 29 (2015).

    Google Scholar 

  28. S. R. More, D. V. Bhatt, and J. V. Menghani, “Study of the parametric performance of solid particle erosion wear under the slurry pot test rig,” Tribol. Ind., 39(4), 471 (2017).

    Article  Google Scholar 

  29. R. Tarodiya and B. K. Gandhi, “Experimental investigation of centrifugal slurry pump casing wear handling solid-liquid mixtures,” Wear, 434, 202972 (2019).

    Article  Google Scholar 

  30. I. Finnie, “Some observations on the erosion of ductile metals,” Wear, 19(1), 81 – 90 (1972).

    Article  CAS  Google Scholar 

  31. A. V. Levy and G. Hickey, “Liquid-solid particle slurry erosion of steels,” Wear, 117(2), 129 – 146 (1987).

    Article  Google Scholar 

  32. D. W. Wheeler and R. J. K. Wood, “Erosion of hard surface coatings for use in offshore gate valves,” Wear, 258(1 – 4), 526 – 536 (2005).

    Article  CAS  Google Scholar 

  33. S. R. More, D. V. Bhatt, and J. V. Menghani, “Failure analysis of coal bottom ash slurry pipeline in thermal power plant,” Eng. Fail. Anal., 90, 489 – 496 (2018).

    Article  Google Scholar 

  34. A. Rawat, S. N. Singh, and V. Seshadri, “Erosion wear studies on high concentration fly ash slurries,” Wear, 378, 114 – 125 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Makwana.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makwana, M.D., Sutaria, B.M. Experimental Study of Slurry Erosion of Ni-Hard Cast Iron and Prediction of Wear of Materials with the Use of Artificial Neural Network (ANN). Met Sci Heat Treat 65, 356–362 (2023). https://doi.org/10.1007/s11041-023-00938-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00938-7

Keywords

Navigation