Skip to main content
Log in

Mathematical Modeling of the Argon Arc Welding Process. Part 2. Welding of HP40NbTi Alloy Pipelines

  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of argonarc welding modes on the structure and phase composition of a pipe welded joint made of HP40NbTi alloy is studied by computer simulation and experimental methods. The reduction of heat input due to the use of pulsed welding was shown to be an effective method for inhibiting the phase transformation of niobium carbide and preventing the formation of an undesirable G-phase in the structure of the welded joint. The possibility of purposeful regulation of the structure and, as a consequence, properties of the welded joint by optimizing the parameters of the technological process using numerical simulation in the LS-DYNA software environment is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. R. Allahkaram, S. Borjali, and H. Khosravi, “Investigation of weldability and property changes of high pressure heat-resistant cast stainless steel tubes used in pyrolysis furnaces after a five-year service,” Mater. Des., 33, 476 – 484 (2012). DOI: https://doi.org/https://doi.org/10.1016/j.matdes.2011.04.052

    Article  CAS  Google Scholar 

  2. J. Guo, W. Liu, C. Li, and X. Zhang, “Microstructural characterization and mechanical behavior of Cr25Ni35NbM alloy dissimilar weld joint for application in a hydrogen reformer furnace,” Metal. Res. Technol., 117(6), Art. 612 (2020). DOI: https://doi.org/10.1051/metal/2020067

  3. M. Attarian, A. Karimi Taheri, S. Jalilvand, and A. Habibi, “Microstructural and failure analysis of welded primary reformer furnace tube made of HP-Nb micro alloyed heat resistant steel,” Eng. Failure Anal., 68, 32 – 51 (2016). DOI: https://doi.org/10.1016/j.engfailanal.2016.05.023

  4. A. Reihani, S. A. Razavi, E. Abbasi, and A.-R. Etemadi, “Failure analysis of welded radiant tubes made of cast heat-resisting steel,” J. Fail. Anal. Prev., 13(6), 658 – 665 (2013). DOI: https://doi.org/https://doi.org/10.1007/s11668-013-9741-y

    Article  Google Scholar 

  5. B. Hu, X. Chen, Ch. Liu, X. Lian, and T. Chen, “Study on microstructure and properties of centrifugal casting 35Cr45NiNb+MA furnace tubes during service,” Mater. High Temp., 36(6), 489 – 498 (2019). DOI: https://doi.org/https://doi.org/10.1080/09603409.2019.1640511

    Article  Google Scholar 

  6. A. Ghatak and P. S. Robbi, “High-temperature tensile properties and creep life assessment of 25Cr35NiNb micro-alloyed steel,” J. Mater. Eng. Perform., 25(5), 2000 – 2007 (2016). DOI: https://doi.org/https://doi.org/10.1007/s11665-016-2016-5

    Article  CAS  Google Scholar 

  7. S. Borjali, S. R. Allahkaram, and H. Khosravi, “Effects of working temperature and carbon diffusion on the microstructure of high pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition,” Mater. Des., 34, 65 – 73 (2012). DOI: https://doi.org/https://doi.org/10.1016/j.matdes.2011.07.069

    Article  CAS  Google Scholar 

  8. E. Guglielmino, R. Pino, C. Servetto, and A. Sili, “Damage investigation on welded tubes of a reforming furnace,” La Metallurgia Italiana, 107(1), 53 – 58 (2015).

    Google Scholar 

  9. C. Singhatham and K. Eidhed, “The study of welding repair parameters of tube 35Cr – 45Ni – Nb alloy of the ethylene heating furnace,” Appl. Mech. Mater., 848, 35 – 38 (2016). DOI: https://doi.org/https://doi.org/10.4028/www.scientific.net/amm.848.35

    Article  Google Scholar 

  10. A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi, M. D. Fuks, and S. N. Petrov, “Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2,” Met. Sci. Heat Treat., 55(3 – 4), 209 – 215 (2013). DOI: https://doi.org/10.1007/s11041-013-9607-7

  11. S. Yu. Kondrat’ev, G. P. Anastasiadi, A. V. Ptashnik, and S. N. Petrov, “Evolution of the microstructure and phase composition of a subsurface of cast HP-type alloy during a long-term high-temperature aging,” Mater. Charact., 150,

  12. – 173 (2019). DOI: https://doi.org/10.1016/j.matchar.2019.02.020

  13. J. Guo, T. Cao, C. Cheng, X. Meng, and J. Zhao, “Microstructure evolution and mechanical properties degradation of HPNb alloy after a five-year service,” Mater. Res. Express, 5(4), Art. 046509 (2018). DOI: https://doi.org/10.1088/2053-1591/aab8e9

  14. 13. E. A. Kenik, P. J. Maziasz, R. W. Swindeman, J. Cervenka, and D. May, “Structure and phase stability in a cast modified-HP austenite after long-term ageing,” Scr. Mater., 49(2), 117 – 122 (2003). DOI: https://doi.org/https://doi.org/10.1016/S1359-6462(03)00238-0

    Article  CAS  Google Scholar 

  15. A. I. Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi, A. S. Oryshchenko, M. D. Fuks, and S. N. Petrov, “Transformation of the structure of refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb during a long-term high-temperature hold,” Met. Sci. Heat Treat., 55(9 – 10), 517 – 525 (2014). DOI: https://doi.org/10.1007/s11041-014-9664-6

  16. 15. A. Alvino, D. Ramires, A. Tonti, and D. Lega, “Influence of chemical composition on microstructure and phase evolution of two HP heat resistant stainless steels after long term plant-service aging,” Mater. High Temp., 31(1), 2 – 11 (2014). DOI: https://doi.org/https://doi.org/10.1179/0960340913Z.0000000001

    Article  CAS  Google Scholar 

  17. J. Guo, X. Zhang, Ch. Li,W. Liu, and Zh. Zhang, “Effects ofW and Ce micro addition in filler metal on microstructure and creep strength of Cr35Ni45NbM alloy weld joint,” Mater. Today Commun., 28, Art. 102600 (2021). DOI: https://doi.org/10.1016/j.mtcomm.2021.102600

  18. S. Yu. Kondrat’ev, M. D. Fuks, M. A. Frolov, and S. N. Petrov, “Analysis of the structure, phase composition and mechanical properties of a tubular welded joint from refractory alloy HP40NbTi,” Met. Sci. Heat Treat., 62(11), 677 – 688 (2021). DOI: https://doi.org/10.1007/s11041-021-00622-8

  19. S. Yu. Kondrat’ev, Yu. A. Belikova, M. D. Fuks, M. A. Frolov, and S. N. Petrov, “Effect of G-phase on the fracture behavior of a welded joint from refractory alloy HP40NbTi,” Met. Sci. Heat Treat., 64(1 – 2), 34 – 44 (2022). DOI: https://doi.org/10.1007/s11041-022-00759-0

  20. 19. F. C. Nunes, L. H. de Almeida, J. Dille, J.-L. Delplancke, and I. Le May, “Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels,” Mater. Charact., 58(2), 132 – 142 (2007). DOI: https://doi.org/https://doi.org/10.1016/j.matchar.2006.04.007

    Article  CAS  Google Scholar 

  21. 20. L. H. de Almeida, A. F. Ribeiro, and I. Le May, “Microstructural characterization of modified 25Cr – 35Ni centrifugally cast steel furnace tubes,” Mater. Charact., 49(3), 219 – 229 (2007). DOI: https://doi.org/https://doi.org/10.1016/S1044-5803(03)00013-5

    Article  CAS  Google Scholar 

  22. L. H. de Almeida, P. R. O. Emygdio, I. Le May, and F. C. Ferraz, “Microstructural characterization and geometrical analysis of welded joints of high temperature stainless steel tubes,” in: M. G. Burke, E. A. Clark, and E. J. Palmiere (eds.), Understanding Microstructure: Key to Advances in Materials: Proceedings of the 29th Annual Technical Meeting of the International Metallographic Society, Materials Park, USA (1997), pp. 193 – 198.

  23. 22. A. F. Ribeiro, R. M. T. Borges, and L. H. de Almeida, “Phase transformation in heat resistant steels observed by STEM (NbTi)C-NiNbSi (G-Phase),” Acta Microsc., 11(1), 65 – 70 (2002).

    Google Scholar 

  24. M. Schill and E.-L. Odenberger, “Simulation of residual deformation from a forming and welding process using LS-DYNA®,” in: Proc. of 13th Int. LS-DYNA Conf. (2014), pp. 47 – 54.

  25. M. Schill, A. Jernberg, and T. Klöppel, “Recent developments for welding simulations in LS-DYNA® and LS-PrePost®,” in: Proc. of 14th Int. LS-DYNA Users Conf. (2016), pp. 1.1 – 1.12.

  26. 25. J. Goldak, A. Chakravarti, and M. Bibby, “Anew finite element model for welding heat source,” Metall. Trans. B, 15B, 299 – 305 (1984).

    Article  Google Scholar 

  27. 26. P. D. Sudersanan and U. A. Kempaiah, “The effect of heat input and travel speed on the welding residual stress by finite element method,” Int. J. Mech. Prod. Eng. Res. Dev., 2(4), 43 – 50 (2012).

    Google Scholar 

  28. 27. X. Guo, X. Jia, J. Gong, L. Geng, J. Tang, Y. Jiang, Y. Ni, and X. Yang, “Effect of long-term aging on microstructural stabilization and mechanical properties of 20Cr32Ni1Nb steel,” Mater. Sci. Eng. A, 690, 62 – 70 (2017). DOI: https://doi.org/https://doi.org/10.1016/j.msea.2017.02.057

    Article  CAS  Google Scholar 

  29. Ch.-m. Fuyang, J.-y. Chen, B. Shao, Y. Zhou, J.-m. Gong, X.-f. Guo, and Y. Jiang, “Effect of microstructural evolution in thermal exposure on mechanical properties of HP40Nb alloy,” Int. J. Pressure Vessels Piping, 192, Art. 104391 (2021). DOI: https://doi.org/10.1016/j.ijpvp. 2021.104391

  30. A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi, and M. D. Fuks, “Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1,” Met. Sci. Heat Treat., 56(1 – 2), 3 – 8 (2014). DOI: https://doi.org/10.1007/s11041-014-9692-2

  31. A. I. Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi, A. S. Oryshchenko& M. D. Fuks, “Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 2,” Met. Sci. Heat Treat., 56(3 – 4), 124 – 130 (2014). DOI: https://doi.org/10.1007/s11041-014-9717-x

  32. S. Yu. Kondrat’ev, A. V. Ptashnik, G. P. Anastasiadi, and S. N. Petrov, “Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy,” Met. Sci. Heat Treat., 57(7 – 8), 402 – 409 (2015). DOI: https://doi.org/10.1007/s11041-015-9896-0

Download references

Acknowledgement

The authors express gratitude to Yu. A. Belikova, an employee of the Common Use Center (CUC) of unique equipment “Composition, structure, and properties of structural and functional materials” of CRISM “Prometey,” for participation in the experimental study of the alloy microstructure.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 23 – 34, June, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, S.Y., Slyusarenko, A.V., Sokolov, Y.A. et al. Mathematical Modeling of the Argon Arc Welding Process. Part 2. Welding of HP40NbTi Alloy Pipelines. Met Sci Heat Treat 65, 345–355 (2023). https://doi.org/10.1007/s11041-023-00937-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00937-8

Keywords

Navigation