Skip to main content
Log in

Nitriding of Steel AISI D2 After Deep Cryogenic Treatment

  • CHEMICAL-HEAT TREATMENT AND COATINGS
  • Published:
Metal Science and Heat Treatment Aims and scope

A comparative study of the structure, wear resistance and mechanical properties of tool steel AISI D2 (Kh12MF) after traditional and alternative heat treatments is performed. The traditional treatment consists of vacuum furnace quenching followed by triple tempering and the alternative treatment includes deep cryogenic treatment followed by nitriding in a tank with molten salt. It is shown that the alternative version changes the morphology of secondary carbides within the steel structure and increases fracture toughness without reducing core hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. M. F. C. Moscoso, F. D. Ramos de Lima, C. R. Lessa, et al., “Effects of cooling parameter and cryogenic treatment on microstructure and fracture toughness of AISI D2 tool steel,” J. Mater. Eng. Perform., 29(12), 7929 – 7939 (2020).

    Article  CAS  Google Scholar 

  2. F. D. Ramos, J. de Oliveira Bairros, and M. F. C. Moscoso, “Deep cryogenic treatment in AISI D2 tool steel punches to enhance tool life,” Technol. Metal. Mater. Min., 18, E2442 (2021).

  3. D. Das, K. K. Ray, and A. K. Dutta, “Influence of temperature of sub-zero treatments on the wear behaviour of die steel,” Wear, 267(9 – 10), 1361 – 1370 (2009).

    Article  CAS  Google Scholar 

  4. D. Das, R. Sarkar, A. K. Dutta, and K. K. Ray, “Influence of sub-zero treatments on fracture toughness of AISI D2 steel,” Mater. Sci. Eng. A, 528(2), 589 – 603 (2010).

    Article  Google Scholar 

  5. D. Das, A. K. Dutta, and K. K. Ray, “Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness,” Mater. Sci. Eng. A, 527(9), 2182 – 2193 (2010).

    Article  Google Scholar 

  6. D. Das, A. K. Dutta, and K. K. Ray, “Sub-zero treatments of AISI D2 steel: Part II. Wear behaviour,” Mater. Sci. Eng. A, 527(9), 2194 – 2206 (2010).

    Article  Google Scholar 

  7. D. N. Korade, K. V. Ramana, K. R. Jagtap, and N. B. Dhokey, “Effect of deep cryogenic treatment on tribological behaviour of D2 tool steel — An experimental investigation,” Mater. Today: Proc., 4(8), 7665 – 7673 (2017).

    CAS  Google Scholar 

  8. T. Sonar, S. Lomte, C. Gogte, and V. Balasubramanian, “Minimization of distortion in heat treated AISI D2 tool steel: Mechanism and distortion analysis,” Procedia Manuf., 20, 113 – 118 (2018).

    Article  Google Scholar 

  9. B. Podgornik, F. Majdic, V. Leskovsek, and J. Vizintin, “Improving tribological properties of tool steels through combination of deep-cryogenic treatment and plasma nitriding,” Wear, 288, 88 – 93 (2012).

    Article  CAS  Google Scholar 

  10. ASTM E1823-13. Standard Terminology Relating to Fatigue and Fracture Testing. Annual Book of ASTM Standards (2013).

  11. ASTM E2298. Standard Test Method for Instrumented Impact Testing of Metallic Materials. Annual Book of ASTM Standards (2013).

  12. ASTM E384-2016. Standard Test Method for Knoop and Vickers Hardness of Materials. Annual Book of ASTM Standards (2016).

  13. K. Amini, A. Akhbarizadeh, and S. Javadpour, “Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behavior of D2 tool steel,” Int. J. Miner. Metall. Mater., 19(9), 795 – 799(2012).

    Article  CAS  Google Scholar 

  14. H. Ghasemi-Nanesaan M. Jahazi, “Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel,” Mater. Sci. Eng. A, 598, 413 – 419 (2014).

  15. V. I. Gorynin, S. Yu. Kondrat’ev, and M. I. Olenin, “Raising the resistance of pearlitic and martensitic steels to brittle fracture under thermal action on the morphology of the carbide phase,” Met. Sci. Heat Treat., 55(9 – 10), 533 – 539 (2014).

  16. V. I. Gorynin, S. Yu. Kondrat’ev, M. I. Olenin, and V. V. Rogozhkin, “A concept of carbide design of steels with improved cold resistance,” Met. Sci. Heat Treat., 56(9 – 10), 548 – 554 (2015).

  17. V. I. Gorynin, S. Yu. Kondrat’ev, M. I. Olenin, and M. S. Mikhailov, “Effect of medium-temperature additional tempering on the carbide phase and cold resistance of heat-hardenable steel 09G2SA-A,” Met. Sci. Heat Treat., 60(11 – 12), 722 – 727 (2019).

  18. S. E. Vahdat, S. Nategh, and S. Mirdamadi, “Microstructure and tensile toughness correlation of 1.2542 tool steel after deep cryogenic treatment,” Proc. Mater. Sci., 6, 202 – 207 (2014).

    Article  CAS  Google Scholar 

  19. T. K. Hirsch, A. D. S. Rocha, F. D. Ramos, and T. R. Strohaecker, “Residual stress-affected diffusion during plasma nitriding of tool steels,” Metall. Mater. Trans. A, 35A(11), 3523 – 3530 (2004),

    Article  CAS  Google Scholar 

  20. E. J. Mittemeijer, “Die Beziehungzwischen Makro- und Mikroeigenspannungen und die mechanischen Eigenschaften randschichtgenaerteter Staehle,” HTM – J. Heat Treat. Mater., 39(1), 16 – 29 (1984).

    Article  CAS  Google Scholar 

  21. A. da Silva Rocha, T. Strohaecker, V. Tomala, and T. Hirsch, “Microstructure and residual stresses of a plasma-nitrided M2 tool steel,” Surf. Coat. Technol., 115(1), 24 – 31 (1999).

  22. V. Leskovšek, B. Podgornik, and D. Nolan, “Modelling of residual stress profiles in plasma nitrided tool steel,” Mater. Charact., 59(4), 454 – 461(2008).

    Article  Google Scholar 

  23. R. L. Dalcin, L. F. Oliveira, C. A. T. S. Diehl da Silva, and A. Rocha, “Response of a DIN 18MnCrSiMo6-4 continuous cooling bainitic steel to plasma nitriding with a nitrogen rich gas composition,” Mat. Res., 23(5), 20200269 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. D. Ramos.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 24 – 30, May, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, F.D., Moscoso, M.F.C., Regul, A. et al. Nitriding of Steel AISI D2 After Deep Cryogenic Treatment. Met Sci Heat Treat 65, 285–291 (2023). https://doi.org/10.1007/s11041-023-00927-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00927-w

Keywords

Navigation