Skip to main content
Log in

Dilatometric Study of Structure Formation in Steel 30Kh2GSN2VM Under Quenching-Partitioning and Austempering

  • Published:
Metal Science and Heat Treatment Aims and scope

Steel 30Kh2GSN2VM (VL1) used in the aircraft industry for heavy-duty parts is studied. The temperature and time ranges of the transformation of supercooled austenite under continuous cooling from the temperature of complete austenitization are determined by the method of dilatometry. Different variants of interrupted and isothermal quenching are simulated to establish the special features of the transformations occurring in the steel in different stages of heat treatment. The mechanical properties are analyzed after isothermal and interrupted quenching and after oil quenching and tempering. It is shown that the isothermal quenching and the stage quenching (the quenching-partitioning technology) do not provide the expected stabilization of a considerable content of retained austenite and elevation of the mechanical properties of the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Y. Wang, B. Liu, Q. Pan, et al., “Effect of austempering on the mechanical properties of Nb/V microalloyed bainitic bearing steel,” Crystals, 12(7), 1001 (2022). DOI: https://doi.org/10.3390/cryst12071001

    Article  CAS  Google Scholar 

  2. A. Morri, L. Ceschini, M. Pellizzari, et al., “Effect of the austempering process on the microstructure and mechanical properties of 27MnCrB5-2 steel,” Arch. Metall. Mater., 62(2), 643 – 651 (2017). DOI: https://doi.org/10.1515/amm-2017-0094

    Article  CAS  Google Scholar 

  3. J. Feng and M. Wettlaufer, “Plane-strain fracture toughness of AISI 4140 steel austempered below MS ,” Mater. Sci. Eng. A, 743, 494 – 499 (2019). DOI: https://doi.org/10.1016/j.msea.2018.11.122

    Article  CAS  Google Scholar 

  4. M. V. Maisuradze, Yu. N. Yudin, and A. A. Kuklina, “Increase in impact strength during bainite structure formation in HY-TUF high-strength steel,” Metallurgist, 63(7 – 8), 8490858 (2019). DOI: https://doi.org/10.1007/s11015-019-00899-4

    Article  CAS  Google Scholar 

  5. F.-C. An, S.-X. Zhao, X.-K. Xue, et al., “Incompleteness of bainitic transformation in quenched and tempered steel under continuous cooling conditions,” J. Mater. Res. Technol., 4, 8985 – 8996 (2020). DOI: https://doi.org/10.1016/j.jmrt.2020.06.039

    Article  CAS  Google Scholar 

  6. Y. Onuki, K. Umemura, K. Fujiwara, et al., “Microstructure formation and carbon partitioning with austenite decomposition during isothermal heating process in Fe – Si – Mn – C steel monitored by in situ time-of-flight neutron diffraction,” Metals, 12, 957 (2022). DOI: https://doi.org/10.3390/met12060957

    Article  CAS  Google Scholar 

  7. S. Zhou, F. Hu, K. Wang, et al., “Nanomechanics of retained austenite in medium-carbon low-temperature bainitic steel: A critical analysis of a one-step treatment,” Materials, 15, 1996 (2022). DOI: https://doi.org/10.3390/ma15175996

    Article  CAS  Google Scholar 

  8. D. R. Johnson and W. T. Becker, “Toughness of tempered upper and lower bainitic microstructures in a 4150 steel,” J. Mater. Eng. Perform., 2(2), 255 – 263 (1993). DOI: https://doi.org/10.1007/BF02660294

    Article  CAS  Google Scholar 

  9. M. Azuma, N. Fujita, M. Takahashi, et al., “Modeling upper and lower bainite transformation in steels,” ISIJ Int., 45(2), 221 – 228 (2005). DOI: https://doi.org/10.2355/isijinternational.45.221

    Article  CAS  Google Scholar 

  10. J. G. Zhu, X. Sun, G. C. Barber, et al., “Bainite transformation-kinetics-microstructure characterization of austempered 4140 steel,” Metals, 10, 236 (2020). DOI: https://doi.org/10.3390/met10020236

    Article  CAS  Google Scholar 

  11. A. Yu. Kaletin, Yu. V. Kaletina, and M. A. Ryzhkov, “Carbide-free bainite in low-carbon structural steels,” Pis’ma Mater., 10(3), 249 – 253 (2020).

    Google Scholar 

  12. C. M. Hasan, D. Chakrabarti, and S. B. Singh, “Thermomechanical treatment of steel with carbide-free bainite,” Metal-loved. Term. Obrab. Met., No. 7,9– 18 (2021).

  13. C. Hofer, H. Leitner, F. Winkelhofer, et al., “Structural characterization of “carbide-free” bainite in a Fe – 0.2C – 1.5Si – 2.5Mn steel,” Mater. Charact., 102, 85 – 91 (2015). DOI: https://doi.org/10.1016/j.matchar.2015.02.020

    Article  CAS  Google Scholar 

  14. M. Soliman and H. Palkowski, “Microstructure development and mechanical properties of medium carbon carbide-free bainite steels,” Procedia Eng., 81, 1306 – 1311 (2014). DOI: https://doi.org/10.1016/j.proeng.2014.10.148

    Article  CAS  Google Scholar 

  15. B. He, “On the factors governing austenite stability: Intrinsic versus extrinsic,” Materials, 13, 3440 (2020). DOI: https://doi.org/10.3390/ma13153440

    Article  CAS  Google Scholar 

  16. F. Zhao, P. Chen, B. Xu, et al., “Martensite transformation of retained austenite with diverse stability and strain partitioning during tensile deformation of a carbide-free bainitic steel,” Mater. Charact., 179, 111327 (2021). DOI: https://doi.org/10.1016/j.matchar.2021.111327

  17. J. Mola, E. J. Seo, and L. Cho, “Correlation between mechanical stability and hardness of austenite in martensite/austenite mixtures,” Mater. Sci. Eng. A, 822, 141687 (2021). DOI: https://doi.org/10.1016/j.msea.2021.141687

  18. S. Kang, K. Kim, Y. Son, and S.-J. Lee, “Application of the quenching and partitioning (Q&P) process to D6AC steel,” ISIJ Int., 56, 2057 – 2061 (2016). DOI: https://doi.org/10.2355/isijinternational. ISIJINT-2016-257

    Article  CAS  Google Scholar 

  19. J. Sun and H. Yu, “Microstructure development and mechanical properties of quenching and partitioning (Q&P) steel and an incorporation of hot-dipping galvanization during Q&P process,” Mater. Sci. Eng. A, 586, 100 – 107 (2013). DOI: 10.1016/ j.msea.2013.08.021

    Article  CAS  Google Scholar 

  20. H. Y. Li, X. W. Lu, X. C. Wu, et al., “Bainitic transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon,” Mater. Sci. Eng. A, 527, 6255 – 6259 (2010). DOI: https://doi.org/10.1016/j.msea.2010.06.045

    Article  CAS  Google Scholar 

  21. Y. Takahama, M. J. Santofimia, M. G. Mecozzi, et al., “Phase field simulation of the carbon redistribution during the quenching and partitioning process of a low-carbon steel,” Acta Mater., 60(6 – 7), 2916 – 2926 (2012) *

  22. Y. Xu, F. Chen, Z. Li, et al., “Kinetics of carbon partitioning of Q&P steel: Considering the morphology of retained austenite,” Metals, 12, 344 (2022). DOI: https://doi.org/10.3390/met12020344

    Article  CAS  Google Scholar 

  23. L. Wang and J. G. Speer, “Quenching and partitioning steel heat treatment,” Metallogr., Microstr., Anal., 2, 268 – 281 (2013). DOI: https://doi.org/10.1007/s13632-013-0082-8

  24. B. C. De Cooman and J. G. Speer, “Quench and partitioning steel: A new AHSS concept for automotive anti-intrusion applications,” Steel Res. Int., 77(9 – 10), 634 – 640 (2006). DOI: https://doi.org/10.1002/srin.200606441

    Article  Google Scholar 

  25. E. De Moor and J. G. Speer, “Bainitic and quenching and partitioning steels,” in: Automotive Steels. Design, Metallurgy, Processing and Applications, Woodhead Publ., UK (2017), pp. 289 – 316. DOI: https://doi.org/10.1016/B978-0-08-100638-2.00010-9

  26. A. B. Dobuzhskaya, G. A. Galitsyn, N. V. Mukhranov, et al., “A study of structural and phase transformations under cooling of rail steels,” Stal’, No. 11, 86 – 91 (2015).

    Google Scholar 

  27. B. Adamczyk-Cieslak, M. Koralnik, R. Kuziak, et al., “Studies of bainitic steel for rail applications based on carbide-free, low-alloy steel,” Metall. Mater. Tans. A, 52, 5429 – 5442 (2021). DOI: https://doi.org/10.1007/s11661-021-06480-6

    Article  CAS  Google Scholar 

  28. M. N. Georgiev and T. V. Semenova, “Railroad rails from bainitic steel,” Metal. Sci. Heat Treat., 60, 464 – 470 (2018). DOI: https://doi.org/10.1007/s11041-018-0302-6

    Article  CAS  Google Scholar 

  29. H. Y. Li, X. W. Lu, X. C. Wu, et al., “Bainitic transformation during two-step quenching and partitioning process in a medium carbon steel containing silicon,” Mater. Sci. Eng. A, 527(23), 6255 – 6259 (2010). DOI: https://doi.org/10.1016/j.msea.2010.06.045

    Article  CAS  Google Scholar 

  30. M. V. Maisuradze and M. A. Ryzhkov, “Thermal stabilization of austenite during quenching and partitioning of austenite for automotive steels,” Metallurgist, 62(3 – 4), 337 – 347 (2018). DOI: https://doi.org/10.1007/s11015-018-0666-2

    Article  CAS  Google Scholar 

  31. V. C. Igwemezie and P. C. Agu, “Development of bainitic steels for engineering applications,” Int. J. Eng. Res. Technol., 3(2), 2698 – 2711 (2014). DOI: https://doi.org/10.17577/IJERTV3IS20656

    Article  Google Scholar 

  32. A. T. Tumanov (ed.), Aviation Materials. Vol. 1. Structural Steels [in Russian], ONTI, Moscow (1975), 429 p.

  33. M. V. Maisuradze, M. A. Ryzhkov, Yu. V. Yudin, and A. A. Kuklina, “Transformations of supercooled austenite in a promising high-strength steel grade under continuous cooling conditions,” Metal Sci. Heat Treat., 59(7 – 8), 486 – 490 (2017). DOI: https://doi.org/10.1007/s11041-017-0176-z

    Article  CAS  Google Scholar 

  34. T. A. Kop, J. Sietsma, and S. Van Der Zwaag, “Dilatometric analysis of phase transformations in hypo-eutectoid steels,” J. Mater. Sci., 36, 519 – 526 (2001). DOI: 10.1023/ A:1004805402404

    Article  CAS  Google Scholar 

  35. D. P. Koistinen and R. E. Marburger, “A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,” Acta Metall., 7, 59 – 60 (1959). DOI: https://doi.org/10.1016/0001-6160(59)90170-1

    Article  Google Scholar 

  36. D. V. Edmomds, K. He, F. C. Rizzo, et al., “Quenching and partitioning martensite — A novel steel heat treatment,” Mater. Sci. Eng. A, 438 – 440, 25 – 34 (2006). DOI: https://doi.org/10.1016/j.msea.2006.02.133

    Article  CAS  Google Scholar 

  37. M. V. Maisuradze, A. A. Kuklina, D. I. Lebedev, et al., “Microstructure and mechanical properties of aircraft steel 30Kh2GSN2VM,” Metalloved. Term. Obrab. Met., No. 8, 48 – 56 (2022).

  38. J. B. Austin and R. L. Rickett, “Kinetics of the decomposition of austenite at constant temperature,” Trans. Amer. Inst. Mining Metall. Eng., 964,1– 20 (1939).

    Google Scholar 

  39. M. J. Starink, “Kinetic equations for diffusion-controlled precipitation reactions,” J. Mater. Sci., 32, 4061 – 4070 (1997). DOI: https://doi.org/10.1023/A:1018649823542

    Article  CAS  Google Scholar 

  40. H. K. D. H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, Elsevier Ltd., Oxford (2017), 488 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Maisuradze.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 21 – 33, April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maisuradze, M.V., Ryzhkov, M.A. & Nazarova, V.V. Dilatometric Study of Structure Formation in Steel 30Kh2GSN2VM Under Quenching-Partitioning and Austempering. Met Sci Heat Treat 65, 209–220 (2023). https://doi.org/10.1007/s11041-023-00916-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00916-z

Keywords

Navigation