Skip to main content
Log in

Corrosion of Aluminum and Aluminum Alloys Used for Rolling Stock

  • ALUMINUM AND ALUMINUM ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

Corrosion resistance of aluminum and aluminum-based alloys is analyzed from the standpoint of their use for railroad transport (freight and passenger) in aggressive environments. The effect of alloying elements on the operating characteristics of the aluminum alloys is considered. The advantages of aluminum-based alloys with expected high corrosion resistance for replacing container and car steels are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. Aballe, M. Bethencourt, M. J. Canoet, and M. J. Cano, “Localized alkaline corrosion of alloy AA5083 in neutral 3.5% NaCl solution,” Corros. Sci., 43(9), 1657 – 1674 (2001).

    Article  CAS  Google Scholar 

  2. K. N. Allahar, V. Upadhyay, et al., “Characterizing the relaxation of the open-circuit potential during an AC-DC-AC accelerated test,” Corrosion, 66(9), 095001 – 09500111 (2010).

    Article  Google Scholar 

  3. K. N. Allahar, D. Wang, et al., Real Time Monitoring of an Air Force Topcoat/Mg-Rich Primer System in B117 Exposure By-Embedded Electrodes (2009).

  4. K. N. Allahar, A. J. Davenport, et al., “Effect of iron-containing intermetallic particles on the corrosion behavior of aluminum,” Corros. Sci., 48(11), 3455 – 3471 (2006).

    Article  Google Scholar 

  5. R. Ambat and E. S. Dwarakadasa, “The influence of PH on the corrosion of medium strength aerospace Alloy-8090, Alloy-2091 and Alloy-2014,” Corros. Sci., 33(5), 681 – 690 (1992).

    Article  CAS  Google Scholar 

  6. Anawati, S. Diplas, et al., “Effect of copper on anodic activity of aluminum-lead model alloy in chloride solution,” J. Electrochem. Soc., 158(5), 158 – 163 (2011).

  7. A. A. Aksenov, Y. N. Mansurov, D. O. Ivanov, et al., “Mechanical alloying of secondary raw material for foam aluminum production,” Metallurgist, 61(5 – 6), 475 – 484 (2017).

    Article  CAS  Google Scholar 

  8. V. S. Rudnev, P. M. Nedozorov, Yarovaya, et al., “Local plasma and electrochemical oxygenating on the example of AMg5 (AMr5) alloy,” Tsvetn. Met., No. 1, 59 – 64 (2017).

  9. F. Andreatta, H. Terryn, et al., “Corrosion behaviour of different tempers of AA7075 aluminum alloy,” Electrochim. Acta, 49(17 – 18), 2851 – 2862 (2004).

    Article  CAS  Google Scholar 

  10. L. G. Statsenko, O. A. Pugovkina, and Yu. N. Mansurov, “Influence of geometrical dimensions of non-ferrous metal inclusions on resonance properties of microwave devices,” Tsvetn. Met., 2015(12), 71 – 76 (2015).

    Article  Google Scholar 

  11. D. R. Baer, C. F.Windisch, et al., “Influence of Mg on the corrosion of Al,” J. Vacuum Sci. Technol. a-Vacuum Surf. Films, 18(1), 131 – 136 (2000).

  12. D. V. Miklushevskiy, S. Y. Mansurov, T. N. Piterskaya, and Yu. N. Mansurov, “Economy and innovation management of universities,” Tsvetn. Met., 9, 6 – 12 (2015).

    Article  Google Scholar 

  13. D. Battocchi, A. M. Simoes, et al., “Comparison of testing solutions on the protection of Al-alloys using a Mg-rich primer,” Corros. Sci., 48(8), 2226 – 2240 (2006).

    Article  CAS  Google Scholar 

  14. Y. N. Mansurov, Y. A. Miklin, N. A. Miklin, and A. V. Nikolskii, “Methods and equipment for breaking down gold-containing concentrates from lean ores and mining industry waste,” Metallurgist, 62(1 – 2), 169 – 175 (2019).

    Google Scholar 

  15. N. Birbilis and R. G. Buchheit, “Electrochemical characteristics of intermetallic phases in aluminum alloys,” J. Electrochem. Soc., 152(4), B140 (2005).

    Article  CAS  Google Scholar 

  16. A. A. Andreeva, S. Yu. Mansurov, D. V. Miklushevskiy, and Yu. N. Mansurov, “Model of formation of innovation process for large industrial enterprises,” Tsvetn. Met., 2015(3), 74 – 77 (2015).

    Article  Google Scholar 

  17. Yu. N. Mansurov, J. U. Rakhmonov, N. V. Letyagin, and A. S. Finogeyev, “Influence of impurity elements on the casting properties of Al – Mg based alloys,” Non-Ferr. Met., 44(1), 24 – 29 (2018).

    Google Scholar 

  18. Yu. N. Mansurov, A. A. Aksenov, and V. P. Reva, “Influence of the chill-mold casting process on the structure and properties of aluminum alloys with eutectic constituents,” Tsvetn. Met., 5, 77 – 81 (2018).

    Article  Google Scholar 

  19. C. Blanc, B. Lavelle, et al., “The role of precipitates enriched with copper on the susceptibility to pitting corrosion of the 2024 aluminum alloy,” Corros. Sci., 39(3), 495 – 510 (1997).

    Article  CAS  Google Scholar 

  20. F. Blin, P. Koutsoukos, et al., “The corrosion inhibition mechanism of new rare earth cinnamate compounds—Electrochemical studies,” Electrochim. Acta, 52(21) 6212 – 6220 (2007).

    Article  CAS  Google Scholar 

  21. A. A. Aksenov, Yu. N. Mansurov, D. O. Ivanov, and D. S. Kadyrova, “Foam aluminum for small business in the far east,” Tsvetn. Met., 4, 81 – 85 (2017).

    Article  Google Scholar 

  22. A. Boag, A. E. Hughes, et al., “How complex is the microstructure of AA2024-T3,” Corros. Sci., 51(8), 1565 – 1568 (2009).

    Article  CAS  Google Scholar 

  23. A. I. Bezrukikh, V. N. Baranov, I. L. Konstantinov, et al., “Modeling of casting technology of large-sized ingots from deformable aluminum alloys,” Int. J. Adv. Manuf. Technol., 120(1 – 2), 761 – 780 (2022).

    Article  Google Scholar 

  24. Y. N. Mansurov and J. U. Rakhmonov, “Analysis of the phase composition and the structure of aluminum alloys with increased content of impurities,” Non-Ferr. Met., 45(2), 37 – 42 (2018).

    Google Scholar 

  25. V. S. Rudnev, T. P. Yarovaya, P. M. Nedozorov, and Y. N. Mansurov, “Wear-resistant oxide coatings on aluminum alloy formed in borate and silicate aqueous electrolytes by plasma electrolytic oxidation,” Prot. Met. Phys. Chem. Surf., 53(3), 466 – 474 (2017).

    Article  CAS  Google Scholar 

  26. Yu. N. Mansurov, E. I. Kurbatkina, I. Yu. Buravlev, and V. P. Reva, “Features of structure’s formation and properties of composite aluminum alloy ingots,” Non-Ferr. Met., 39(2), 40 – 47 (2015).

    Google Scholar 

  27. Yu. N. Mansurov, V. P. Reva, S. Yu. Mansurov, and M. V. Beloborodov, “Economic and social basis of material science development in the far east,” Tsvetn. Met., 11, 88 – 93 (2016).

    Article  Google Scholar 

  28. Yu. N. Mansurov, N. A. Belov, A. V. Sannikov, and I. Yu. Buravlev, “Optimization of composition and properties of heat resistant complex-alloyed aluminum alloy castings,” Non-Ferr. Met., 39(2), 48 – 55 (2015).

    Google Scholar 

  29. D. S. Voroshilov, M. M. Motkov, S. B. Sidelnikov, et al., “Obtaining Al – Zr – Hf wire using electromagnetic casting, controlled rolling-extrusion, and drawing,” Int. J. Lightweight Mater. Manuf., 5(3), 352 – 368 (2022).

    CAS  Google Scholar 

  30. S. B. Sidelnikov, V. N. Baranov, I. L. Konstantinov, et al., “Investigation of rolling modes, structure, and properties of aluminum- magnesium alloy plates with reduced scandium content,” Int. J. Adv. Manuf. Technol., 12(1 – 2), 1373 – 1384 (2022).

    Article  Google Scholar 

  31. Y. N. Mansurov, D. S. Kadyrova, and J. Rakhmonov, “Dependence of corrosion resistance for aluminum alloys with composition increased impurity content,” Metallurgist, 62(11 – 12), 1181 – 1186 (2019).

    Article  CAS  Google Scholar 

  32. R. G. Buchheit, M. A. Martinez, et al., “Evidence for Cu ion formation by dissolution and dealloying the Al2 CuMg intermetallic compound in rotating ring-disk collection experiments,” J. Electrochem. Soc., 147(1), 119 – 124 (2000).

    Article  CAS  Google Scholar 

  33. R. G. Buchheit, L. P. Montes, et al., “The electrochemical characteristics of bulk-synthesized Al[sub 2]CuMg,” J. Electrochem. Soc., 146(12), 4424 – 4428 (1999).

    Article  CAS  Google Scholar 

  34. R. G. Buchheit, F. D. Wall, et al., “Anodic dissolution-based mechanism for the rapid cracking, preexposure phenomenon demonstrated by aluminum-lithium-copper alloys,” Corrosion, 51(6), 417 – 428 (1995).

    Article  CAS  Google Scholar 

  35. R. G. Büuchler, T. Watari, et al., “Investigation of the initiation of localized corrosion on aluminum alloys by using fluorescence microscopy,” Corros. Sci., 42(9), 1661 – 1668 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Abdullaev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 46 – 53, March, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidov, B.P., Abdullaev, B.A. & Rakhimov, R.V. Corrosion of Aluminum and Aluminum Alloys Used for Rolling Stock. Met Sci Heat Treat 65, 173–179 (2023). https://doi.org/10.1007/s11041-023-00910-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00910-5

Keywords

Navigation