Skip to main content

Failure Modes of Anodized Automotive Aluminum Alloys: A Review

  • Chapter
  • First Online:
Materials Design and Applications III

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 149))

  • 449 Accesses

Abstract

The use of aluminum alloys is showing an ever-increasing trend today due to its favorable properties. Their properties can be further improved and enhanced by surface treatment and modification procedures. Of these processes, anodization is the best known and most commonly used process that can improve the wear and corrosion resistance of aluminum alloys. This is especially important in the automotive industry, where materials often have to be resistant to special stresses. This article provides an insight into the most common types of damage to anodized alloys and anodizing defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajeel, S., Kasser, N., Ahmed, B.: Breakdown and pitting formation of anodic film aluminum alloy (3003). Mod. Appl. Sci. 4(5), 87–101 (2010)

    Article  CAS  Google Scholar 

  • Amtec Guide to Aluminium & Aluminium Alloy Corrosion. https://www.amteccorrosion.co.uk/aluminium.html

  • Anodizing Defects Catalogue, International quality label for anodising. https://www.defects.qualanod.net/3.html

  • Bargui, M., Wery, M.: Optimization of mechanical and tribological properties of anodized 5754 aluminium alloy. Surf. Eng. Appl. Electrochem. 53, 371–382 (2017)

    Article  Google Scholar 

  • Blawert, C., Hort, N., Kainer K.V.: Automotive applications of magnesium and its alloys. Trans. Ind. Inst. Met. 57 (4), 397–408 (2004)

    Google Scholar 

  • Bocking, C., Reynolds, A.: Mechanism of adhesion failure of anodised coatings on 7075 aluminium alloy. Trans. IMF (89)6, 298–302 (2013)

    Google Scholar 

  • Campbell, W.: Anodised aluminium surfaces for wear-resistance. Int. J. Surf. Eng. Coat. 28(1), 273–291 (1951)

    Google Scholar 

  • Chen, L., et al.: Surface characterization and tribological performance of anodizing micro-textured aluminum-silicon alloys. Mater. 12, 1–15 (2009)

    Google Scholar 

  • Castellero, A., Ricchiardi, G., Baricco, M.: Formation of hairline crazing in an anodised aluminium alloy 6061. La Met. Ital. 100(3), 29–36 (2008)

    Google Scholar 

  • Copper—A driving force behind the automotive industry. https://www.makin-metals.com/about/uses-of-copper-in-cars/

  • Crazing defects (cracks) in the anodic layer. https://aluminumsurface.blogspot.com/2009/06/crazing-defects-cracks-in-anodic-layer.html

  • Crazing of Anodized Finishes Caused By Bending and Forming Operations. https://www.aacron.com/docs/Crazing%20Caused%20By%20Bending%20and%20Forming%20Operations.pdf

  • Csokán, P., Az alumínium elektrokémiai felületkezelése. Műsz. Könyv. 80–100 (1975)

    Google Scholar 

  • Dargusch, M.S., Keay, S.M.: Classification of streaking defects on anodized aluminium extrusions. Mater. Sci. For. 618–619, 349–352 (2009)

    Google Scholar 

  • Defects anodizing: classification. https://aluminium-guide.com/en/defekty-anodirovaniya-alyuminievyx-profilej-klassifikaciya/

  • Fratila-Apachitei, L.E., Apachitei, I., Duszczyk, J.: Thermal effects associated with hard anodizing of cast aluminum alloys. J. Appl. Electrochem. 36, 481–486 (2006)

    Article  CAS  Google Scholar 

  • Feki, M., Wery, M., et al.: Mechanical and abrasive wear properties of anodic oxide layers formed on aluminium. J. Mater. Sci. Tech. 25(4), 508–512 (2009)

    Google Scholar 

  • Fratila-Apachitei L.E., Tichelaar F.D., et al.: A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys. Electrochem. Act. 49, 3169–3177 (2004)

    Google Scholar 

  • Furneaux, R.: Weathering and service life of anodized aluminium. https://www.qualanod.net/weathering-of-anodized-aluminium.html?file=files/qualanod/downloads/weathering%20of%20anodized%20aluminium%20110803.pdf (2011)

  • González, J.A., Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part I: visual observations and gravimetric results. Surf. Coat. Tech. 153(2–3), 225–234 (2002)

    Google Scholar 

  • Grubbs, C.A.: Anodizing of aluminium. Met. Finish. 97(1), 476–493 (1997)

    Article  Google Scholar 

  • Guezmil, M., Bensalah, W, et al.: Effect of test parameters on the friction behaviour of anodized aluminium alloy. Int. Schol. Res. Not. 1–9 (2014)

    Google Scholar 

  • Hartman, A.D., Gerdemann, S.J., Hansen, S.J.: Producing lower-cost titanium for automotive applications. J. Min. Met. Mater. Soc. (TMS), 50, 16–19 (1994)

    Google Scholar 

  • Hirsch, J.R.: Aluminium alloys for automotive application. Mater. Sci. Forum 242, 33–50 (1997)

    Article  CAS  Google Scholar 

  • Hockauf, K., Winter, L., et al.: Einfluss der elektrolytisch anodischen Oxidation auf die Ermüdungsfestigkeit der Aluminiumlegierung AA6082 mit ultrafeinkörnigem Gefüge, Werkstoffw. und Werkstofft. 42(7), 624–631 (2011)

    Google Scholar 

  • Iglesias-Rubianes, L., Skeldon, P., et al.: Behaviour of hydrogen impurity in aluminium alloys during anodizing. Thin Sol. Fil. 424(2), 201–207 (2003)

    Google Scholar 

  • ISO 7583:2013—Anodizing of aluminium and its alloys—Terms and definitions

    Google Scholar 

  • Jozefowicz, M.: Hard coat aluminum anodizing. Met. Fin. 103, 39–41 (2005)

    Google Scholar 

  • Kasi, J., Kasi, A., Bokhari, M.: Study of cracks in non-planar anodic aluminium oxide membrane. Sci. Int. (Lahore) 29(2), 71–74 (2017)

    Google Scholar 

  • Konieczny, J., et al.: The influence of cast method and anodizing parameters on structure and layer thickness of aluminium alloys. J. Mater. Proc. Tech. 157–158, 718–723 (2004)

    Google Scholar 

  • Kulekci, M., K.: Magnesium and its alloys applications in automotive industry. Int. J. Adv. Man. Tech. 39, 851–865 (2008)

    Google Scholar 

  • Kwolek, P., Krupa, K., et al.: Tribological properties of the oxide coatings produced onto 6061-T6 aluminum alloy in the hard anodizing process. J. Mater. Eng. Perf. 27, 3268–3275 (2008)

    Google Scholar 

  • Laszlo, N., Takacs, N.: Tribological examination of anodized Al 356 automotive alloy. In 3rd International Conference on Materials Design and Applications, Uni. Port (2020)

    Google Scholar 

  • Li, D., Herrmann, A.: Macroscratch testing of anodized coatings. NANOVEA, pp. 1–6 (2013)

    Google Scholar 

  • Mearini, G.T., Hoffman, R.W.: Tensile properties of aluminum/alumina multi-layered thin films. J. Elect. Mater. 22, 623–629 (1993)

    Article  CAS  Google Scholar 

  • Mezlini, S., Elleuch, K., Kapsa, Ph.: The effect of sulphuric anodization of aluminium alloys on contact problems. Surf. Coat. Techn. 201, 7855–7864 (2007)

    Article  Google Scholar 

  • Miller, W.S., Zhuang, I., et al.: Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 280(1), 37–49 (2000)

    Google Scholar 

  • Mishra, P., Kain, V., et al.: Scratch behavior of aluminum anodized in oxalic acid: Effect of anodizing potential. Surf. Coat. Tech. 283, 135–147 (2015)

    Google Scholar 

  • Mohseni, E., Sarhan, A., et al.: A study on surface modification of Al7075-T6 alloy against fretting fatigue phenomenon. Adv. Mater. Sci. Eng. 1–17 (2014)

    Google Scholar 

  • Nakano, H., Oue, S., et al.: Pitting corrosion resistance of anodized aluminum alloy processed by severe plastic deformation. Mater. Transact. 48(1), 21–28 (2007)

    Google Scholar 

  • Ofoegbu, S., Fernandez, F., Pereira, A.: The sealing step in aluminum anodizing: a focus on sustainable strategies for enhancing both energy efficiency and corrosion resistance. Coat. 10(3), 1–59 (2020)

    Google Scholar 

  • Osborn, J.H.: Understanding and specifying anodizing. 2014, OMW Corp. 1–10 (2017)

    Google Scholar 

  • Ovundu, M., et al.: Characterization and tribological properties of hard anodized and micro arc oxidized 5754 quality aluminum alloy. Trib. Ind. 37(1) 55–59 (2015)

    Google Scholar 

  • Sachdey, A.K., et al.: Titanium for automotive applications: challenges and opportunities in materials and processing. J. Min. Met. Mater. Soc. (TMS), 64, 553–565 (2012)

    Google Scholar 

  • Sadeler, R., Atasoy, S., Totik, Y.: The fretting fatigue of commercial hard anodized aluminum alloy. J. Mater. Eng. Per. 18(9), 1280–1284 (2009)

    Article  CAS  Google Scholar 

  • Santana Rodriguez, J.J., Snatana Hernández, F.J.: The effect of environmental and meteorological variables on atmospheric corrosion of carbon steel, copper, zinc and aluminium in a limited geographic zone with different types of environment. Corr. Sci., (45)4, 799–815 (2003)

    Google Scholar 

  • Santecchia, E., Cbibbo, M., et al.: Dry sliding tribological properties of a hard anodized AA6082 aluminum alloy. Met. 10(2), 1–15 (2020)

    Google Scholar 

  • Sarha, A.D., Zalnezhad, E., Shukor, M.: The influence of higher surface hardness on fretting fatigue life of hard anodized aerospace AL7075-T6 alloy. Mater. Sci. Eng. 560, 377–387 (2013)

    Article  Google Scholar 

  • Sears, K.: Automotive engineering: strategic overview 2(1), 55–68 (1997)

    Google Scholar 

  • Shahzad, M., Chaussumier, M., et al.: Influence of anodizing process on fatigue life of machined aluminium alloy. Proc. Eng. 2(1), 1015–1024 (2010)

    Google Scholar 

  • Shanmughasundaram, P., Subramanian, R.: Wear behavior of eutectic Al-Si alloy-graphite composites fabricated by combined modified two-stage stir casting and squeeze casting methods. Adv. Mater. Sci. Eng. 2, 1–8 (2013)

    Article  Google Scholar 

  • Sheasby, P.G., Pinner, R.: The surface treatment and finishing of aluminum and its alloys. ASM Int. 418 (1987)

    Google Scholar 

  • Short, T.: The identification and prevention of defects on anodized aluminium parts, Metal Finishing Information Services Ltd 2003. https://www.fot.de/uploads/docs/fehlermoeglichkeiten.pdf

  • Short, E.P., Bryant, A.J.: A review of some defects appearing on anodized aluminium. Trans. IMF, Int. J. Surf. Eng. Coat. 53(1) 169–177 (1975)

    Google Scholar 

  • Short, E.P., Sheasby, P.G.: Fingerprint and general atmospheric corrosion on HE9 extrusions. Int. J. Surf. Eng. Coat. 52, 66–70 (1974)

    Google Scholar 

  • Skeldon, P., Thompson, G.E., et al.: Evidence of oxygen bubbles formed within anodic films on aluminium-copper alloys. J. Phil. Mag. A 76(4), 729–741 (1997)

    Google Scholar 

  • Soderberg, S., Nalewick, J.: Forming and crazing of anodized aluminium, white paper, 1–4. https://cdn2.hubspot.net/hubfs/3424216/Brochures/White%20Paper_Crazing%20and%20Forming_20180618.pdf

  • Sukiman, N.L., et al.: Durability and corrosion of aluminium and its alloys: overview. Property space, techniques and developments, aluminium alloys. New Trends Fabr. Appl. 2, 47–99 (2013)

    Google Scholar 

  • Suraratchai, M., Limido, J., Mabru, C., Chieragatti, R.: Modelling the influence of machined surface roughness on the fatigue life of aluminium alloys. Int. J. Fat. 30, 2119–2126 (2008)

    Article  CAS  Google Scholar 

  • Taylor D., Clancy O.M., The fatigue performance of machined surfaces. Fat. Frac. Eng. Mater. Struc. 14, 329–336 (1991)

    Google Scholar 

  • Wei, T., Yan, F., Tian, J.: Characterization and wear and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy. J. All. Comp. 389(1–2), 169–176 (2005)

    Article  CAS  Google Scholar 

  • Wiesner, C., Künzi, H., Ilschner, B.: Characterization of the topography of turned surfaces and its influence on the fatigue life of Al-7075. Mater. Sci. Eng. A 145, 151–158 (1994)

    Article  Google Scholar 

  • Zhao, X., et al.: An analysis of mechanical properties of anodized aluminum film at high stress. Surf. Rev. Lett. 22 (1), 1–7 (2015)

    Google Scholar 

  • Zhu, H., Couper, M.J., Dable, A.K.: Effect of process variables on the formation of streak defects on anodized aluminum extrusions: an overview. High Temp. Mater. Proc. 31, 105–111 (2012)

    CAS  Google Scholar 

  • Zhu, H., Quan, X., et al.: Investigation of streaking defects on aluminium extrusions. Mater. Sci. For. 561–565, 341–344 (2007)

    Google Scholar 

  • Zhu, H., Zhang, X., et al.: The formation of streak defects on anodized aluminum extrusions. J. Min. Met. Mater. Soc. (TMS) 52, 46–51 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Laszlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laszlo, N., Takacs, N. (2021). Failure Modes of Anodized Automotive Aluminum Alloys: A Review. In: da Silva, L.F.M. (eds) Materials Design and Applications III. Advanced Structured Materials, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-030-68277-4_2

Download citation

Publish with us

Policies and ethics