Skip to main content
Log in

Distribution of Residual Compressive Stresses in Induction Hardened Steel Gears: Effect of Parameters on Distortion, Hardness and Phase Composition

  • TECHNICAL INFORMATION
  • Published:
Metal Science and Heat Treatment Aims and scope

Gears of module 2.5 from steel EN24 are studied after induction hardening at different powers (30 – 55 W). The effect of the hardening on the microstructure, microhardness, residual stresses and distortion of the geometry of the gears is determined. The hardening mode providing minimum distortion of the gear size is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. P. J. Fernandes and C. Mcduling, “Surface contact fatigue failures in gears,” Eng. Fail. Anal., 4(2), 99 – 107 (1997).

    Article  Google Scholar 

  2. P. J. Fernandes, “Tooth bending fatigue failures in gears,” Eng. Fail. Anal., 3(3), 219 – 225 (1996).

    Article  Google Scholar 

  3. M. J. Schneider and M. S. Chatterjee, Introduction to Surface Hardening of Steels, ASM Handbook (2013), pp. 389 – 398.

  4. K. Matsui, H. Eto, K. Yukitake, et al., “Increase in fatigue limit of gears by compound surface refining using vacuum carburizing, contour induction hardening and double shot peening,” JSME Int. J., Ser. A: Solid Mech. Mater. Eng., 45(2), 290 – 297 (2002).

  5. L. Bertini and V. Fontanari, “Fatigue behaviour of induction hardened notched components,” Int. J. Fatigue, 21(6), 611 – 617 (1999).

    Article  CAS  Google Scholar 

  6. A. D. Da Silva, T. A. Pedrosa, J. L. Gonzalez Mendez, et al., “Distortion in quenching an AISI 4140 C-ring — Predictions and experiments,” Mater. Design, 42, 55 – 61 (2012).

    Article  CAS  Google Scholar 

  7. A. Sugianto, M. Narazaki, M. Kogawara, et al., “Numerical simulation and experimental verification of carburizing-quenching process of SCr420H steel helical gear,” J. Mater. Proc. Technol., 209(7), 3597 – 3609 (2009).

    Article  CAS  Google Scholar 

  8. M. Benedetti, V. Fontanari, B. R. Hohn, et al., “Influence of shot peening on bending tooth fatigue limit of case hardened gears,” Int. J. Fatigue, 24(11), 1127 – 1136 (2002).

    Article  CAS  Google Scholar 

  9. V. Rudnev, “Induction hardening of gears and critical components,” Gear Tech., 58 – 63 (2008).

  10. S. Da Sun, Q. Liu, M. Brandt, et al., “Effect of laser clad repair on the fatigue behaviour of ultra-high strength AISI 4340 steel,” Mater. Sci. Eng. A, 606, 46 – 57 (2014).

    Article  CAS  Google Scholar 

  11. A. Sahoo and P. Mishra, “A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel,” J. Indus. Eng. Int., 5(3), 407 – 416 (2014).

    Google Scholar 

  12. M. Narazaki, G. E. Totten, and G. M.Webster, Hardening by Reheating and Quenching, ASM International, Materials Park, OH (2002), pp. 248 – 295.

  13. H. W. Zoch, “From single production step to entire process chain — the global approach of distortion,” Eng. Mat.-wiss. u. Werkstofftech, 37(1), 6 – 10 (2006).

    Article  Google Scholar 

  14. D. Klein, M. Seifert, and K. D. Thoben, “Taking the distortion of component parts along a manufacturing chain into consideration during planning,” Eng. Mat.-wiss. u. Werkstofftech, 40, 349 – 353 (2009).

    Article  Google Scholar 

  15. J. Yi, M. Gharghouri, P. Bocher, et al., “Distortion and residual stress measurements of induction hardened AISI 4340 discs,” Mater. Chem. Phys., 142(1), 248 – 258 (2013).

    Article  CAS  Google Scholar 

  16. S. Raadnui, “Spur gear wear analysis as applied for tribological based predictive maintenance diagnostics,” Wear, 426, 1748 – 1760 (2019).

    Article  CAS  Google Scholar 

  17. A. Muniyappa, S. Chandramohan, and S. Seethapathy, “Detection and diagnosis of gear tooth wear through metallurgical and oil analysis,” Tribo Online, 5(2), 102 – 110 (2010).

    Article  Google Scholar 

  18. B. Zhang, H. Liu, H. Bai, et al., “Ratchetting — multiaxial fatigue damage analysis in gear rolling contact considering tooth surface roughness,” Wear, 428, 137 – 146 (2019).

    Google Scholar 

  19. H. Liu, H. Liu, C. Zhu, et al., “A review on micropitting studies of steel gears,” Coat., 42, 1 – 27 (2019).

    Google Scholar 

  20. M. Fitzpatrick, T. Fry, and P. Holdway, NPL Good Practice Guide No. 52: Determination of Residual Stresses by X-Ray Diffraction, Issue 2, NPL Great Britain, (2005).

  21. O. Anderoglu, Residual Stress Measurement Using X-Ray Diffraction (Dissertation), Texas A&M University (2005).

  22. M. E. Hilley, J. A. Larson, C. F. Jatczak, et al., Residual Stress Measurement by x-ray Diffraction-SAE J784a, Soc. Auto. Eng. Incorp., New York (1971).

    Google Scholar 

  23. ASTM E. 915: Standard Test Method for Verifying the Alignment of x-ray Diffraction Instrumentation for Residual Stress Measurement, ASTM Int., West Conshohocken, PA (2003).

  24. V. F. Zackay, E. R. Parker, D. Fahr, et al., “The enhancement of ductility in high-strength steels,” ASM Transac. Quart., 60(2), 252 – 259 (1967).

    CAS  Google Scholar 

  25. W.W. Gerberich, P. L. Hemmings, M. D. Merz, et al., “Preliminary toughness results on trip steel,” in: LBNL Report: UCRL-18203, Lawrence Berkeley National Laboratory (1968), pp. 1 – 15.

  26. C. F. Jatczak, “Retained austenite and its measurement by x-ray diffraction,” SAE Transac., 1657 – 1676 (1980).

  27. ASTM E. 975-03: Standard Practice for x-ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM, West Conshohocken, PA (2008).

  28. J. D. Verhoeven, Steel Metallurgy for the Non-Metallurgist, ASM Int. (2007), pp. 99 – 105.

  29. ASM Handbook, Vol. 4, Heat Treating, ASM Int. (1991), V. 4, p. 211.

  30. W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction, John Wiley & Sons, New York (2007).

    Google Scholar 

  31. F. J. Humphreys and M. Hatherly, “Chap. 11, Grain growth following recrystallization,” in: Recrystallization and Related Annealing Phenomena (2007) pp. 333 – 378.

  32. V. Rudnev, D. Loveless, and R. L. Cook, in: Handbook of Induction Heating, CRC Press (2017).

    Book  Google Scholar 

  33. S. Raadnui, “Spur gear wear analysis as applied for tribological based predictive maintenance diagnostics,” Wear, 426, 1748 – 1760 (2019).

    Article  CAS  Google Scholar 

  34. H. Kristoffersen and P. Vomacka, “Influence of process parameters for induction hardening on residual stresses,” Mater. Design, 22(8), 637 – 644 (2001).

    Article  CAS  Google Scholar 

  35. N. L. Loh and W. Siewl, “Residual stress profiles of plasma nitride steels,” Surf. Eng., 15(2), 137 – 142 (1999).

    Article  CAS  Google Scholar 

  36. L. D. Barlow and M. Du Toit, “Effect of the austenitising heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420,” J. Mater. Eng. Perform., 21(7), 1327 – 1336 (2012).

    Article  CAS  Google Scholar 

  37. J. B. Lee, N. Kang, J. T. Park, et al., “Kinetics of carbide formation for quenching and tempering steels during high-frequency induction heat treatment,” Mater. Chem. Phys., 129(1 – 2), 365 – 370 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dinesh Babu.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 48 – 55, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navin, R.I., Babu, P.D., Marimuthu, P. et al. Distribution of Residual Compressive Stresses in Induction Hardened Steel Gears: Effect of Parameters on Distortion, Hardness and Phase Composition. Met Sci Heat Treat 63, 449–455 (2021). https://doi.org/10.1007/s11041-021-00710-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00710-9

Key words

Navigation