Skip to main content
Log in

Alternative Kinetic Model of Growth of Boride Layers on Steel AISI 316

  • SURFACE ENGINEERING
  • Published:
Metal Science and Heat Treatment Aims and scope

An alternative kinetic model is suggested for analyzing the growth of iron boride layers on the surface of steel AISI 316 in the range of 1123 – 1273 K. The approach is based on classical Fick’s laws with allowance for the effect of the incubation period on the process of formation of boride layers. The activation energy of boron is calculated for FeB and Fe2B and compared to published data. The model is verified experimentally for the case of 3-h and 5-h boriding at 1243 K. The experimental thicknesses of the layers are compared to the values predicted by the alternative diffusion model and by the integral method. The experimental and the predicted values agree well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Here and below in the paper the content of the elements is given in weight percent.

References

  1. M. Kulka, “Trends in thermochemical techniques of boriding,” in: Current Trends in Boriding, Engineering Materials, Springer, Cham, Switzerland (2019), pp. 17 – 98.

  2. S. U. Bayça, O. Bican, B. Yamanel, et al., “The effect of solid boriding time on the structure, hardness and corrosion properties properties of AISI 5140 steel,” Prot. Met. Phys. Chem. Surf., 56, 591 – 597 (2020).

    Article  Google Scholar 

  3. M. Ipek, G. Celebi Efe, I. Ozbek, et al., “Investigation of boronizing kinetics of AISI 51100 steel,” J. Mater. Eng. Perform., 21, 733 – 738 (2012).

    Article  CAS  Google Scholar 

  4. C. Martini, G. Palombarini, G. Poli, and D. Prandstraller, “Sliding and abrasive wear behavior of boride coatings,” Wear, 256, 608 – 613 (2004).

    Article  CAS  Google Scholar 

  5. M. S. Karakaş, A. Günen, E. Kanca, and E. Yilmaz, “Boride layer growth kinetics of AISI H13 steel borided with nano-sized powders,” Arch. Metall. Mater., 63, 159 – 165 (2018).

    Google Scholar 

  6. M. Kulka, N. Makuch, A. Pertek, and L. Maldzinski, “Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2–BCl3 atmosphere,” J. Solid State Chem., 199, 196 – 203 (2014).

    Article  CAS  Google Scholar 

  7. M. Keddam, M. Kulka, N. Makuch, et al., “A kinetic model for estimating the boron activation energies in the FeB and Fe2B layers during the gas-boriding of Armco iron: Effect of boride incubation times,” Appl. Surf. Sci., 298, 155 – 163 (2014).

    Article  CAS  Google Scholar 

  8. A. N. Simonenko, V. A. Shestakov, and V. N. Poboinya, “Liquid boriding in induction salt baths,” Met. Sci. Heat Treat., 24, 360 – 361 (1982).

    Article  Google Scholar 

  9. I. Campos, R. Torres, O. Bautista, et al., “Effect of boron paste thickness on the growth kinetics of polyphase boride coatings during the boriding process,” Appl. Surf. Sci., 252, 2396 – 2403 (2006).

    Article  CAS  Google Scholar 

  10. M. Elias-Espinosa, M. Ortiz-Domínguez, M. Keddam, et al., “Boriding kinetics and mechanical behavior of AISI O1 steel,” Surf. Eng., 31, 588 – 597 (2015).

    Article  CAS  Google Scholar 

  11. K. G. Anthymidis, E. Stergioudis, and D. N. Tsipas, “Boriding in a fluidized bed reactor,” Mater. Lett., 51, 156 – 160 (2001).

    Article  CAS  Google Scholar 

  12. E. Rodrýguez Cabeo, G. Laudien, S. Biemer, et al., “Plasma-assisted boriding of industrial components in a pulsed d.c. glow discharge,” Surf. Coat. Technol., 116 – 119, 229 – 233 (1999).

  13. I. Gunes, S. Taktak, C. Bindal, et al., “Investigation of diffusion kinetics of plasma paste borided AISI 8620 steel using a mixture of B2O3 paste and B4C/SiC,” Sadhana, 38, 513 – 526 (2013).

    Article  CAS  Google Scholar 

  14. M. Keddam, R. Chegroune, M. Kulka, et al., “Characterization, tribological and mechanical properties of plasma paste borided AISI 316 steel,” Trans. Indian Inst. Met., 71, 79 – 90 (2018).

    Article  CAS  Google Scholar 

  15. M. Keddam and S. M. Chentouf, “A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding,” Appl. Surf. Sci., 252, 393 – 399 (2005).

    Article  CAS  Google Scholar 

  16. C. M. Brakman, A. W. J. Gommers, and E. J. Mittemeijer, “Boriding of Fe and Fe – C, Fe – Cr, and Fe – Ni alloys: Boride-layer growth kinetics,” J. Mater. Res., 4, 1354 – 1370 (1989).

    Article  CAS  Google Scholar 

  17. B. Mebarek, M. Keddam, and H. Aboshighiba, “LS-SVM approach for modeling the growth kinetics of FeB and Fe2B layers formed on Armco iron,” Ingénierie des Systèmes d’Information, 23, 29 – 41 (2018).

    Article  Google Scholar 

  18. I. Campos-Silva, M. Ortiz-Domínguez, C. Tapia-Quintero, et al., “Kinetics and boron diffusion in the FeB/Fe2B layers formed at the surface of borided high-alloy steel,” J. Mater. Eng. Perform., 21, 1714 – 1723 (2012).

    Article  CAS  Google Scholar 

  19. M. Keddam and M. Kulka, “A kinetic model for the boriding kinetics of AISI D2 steel during the diffusion annealing process,” Prot. Met. Phys. Chem. Surf., 54, 282 – 290 (2018).

    Article  CAS  Google Scholar 

  20. I. Campos, R. Torres, G. Ramírez, et al., “Growth kinetics of iron boride layers: Dimensional analysis,” Appl. Surf. Sci., 252, 8662 – 8667 (2006).

    Article  CAS  Google Scholar 

  21. I. Campos-Silva, M. Ortiz-Domínguez, O. Bravo-Bárcenas, et al., “Formation and kinetics of FeB/Fe2B layers and diffusion zone at the surface of AISI 316 borided steels,” Surf. Coat. Technol., 205, 403 – 412 (2010).

    Article  CAS  Google Scholar 

  22. I. Campos-Silva, M. Ortíz-Domínguez, N. López-Perrusquia, et al., “Determination of boron diffusion coefficients in borided tool steels,” Defect Diffus. Forum, 283 – 286, 681 – 686 (2009).

  23. M. Keddam and M. Kulka, “Boriding kinetics of AISI D2 steel by using two different approaches,” Metal Sci. Heat Treat., 61, 756 – 763 (2020).

    Article  CAS  Google Scholar 

  24. M. Keddam and M. Kulka, “Simulation of the growth kinetics of FeB and Fe2B layers on AISI D2 steel by the integral method,” Phys. Met. Metallogr., 119, 842 – 851 (2018).

    Article  CAS  Google Scholar 

  25. L. G. Yu, X. J. Chen, A. K. Khor, and G. Sundararajan, “FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics,” Acta Mater., 53, 2361 – 2368 (2005).

    Article  CAS  Google Scholar 

  26. H. Okamoto, “B – Fe (boron – iron)”, J. Phase Equil. Diff., 25, 297 – 298 (2004).

    Article  CAS  Google Scholar 

  27. L. G. Yu, K. A. Khor, and G. Sundararajan, “Boriding of mild steel using the spark plasma sintering (SPS) technique,” Surf. Coat. Technol., 157, 226 – 230 (2002).

    Article  CAS  Google Scholar 

  28. G. Kartal, O. L. Eryilmaz, G. Krumdick, et al., “Kinetics of electrochemical boriding of low carbon steel,” Appl. Surf. Sci., 257, 6928 – 6934 (2011).

    Article  CAS  Google Scholar 

  29. S. Sen, U. Sen and C. Bindal, “An approach to kinetic study of borided steels,” Surf. Coat. Technol., 191, 274 – 285 (2005).

    Article  CAS  Google Scholar 

  30. K. Genel, I. Ozbek, and C. Bindal, “Kinetics of boriding of AISI W1 steel,” Mater. Sci. Eng. A, 347, 311 – 314 (2003).

    Article  Google Scholar 

  31. K. Genel, “Boriding kinetics of H13 steel,” Vacuum, 80, 451 – 457 (2006).

    Article  CAS  Google Scholar 

  32. A. G. Çelik, “Investigation of the diffusion rate of boron atom in AISI D3 steel,” Prot. Met. Phys. Chem. Surf., 56, 780 – 784 (2020).

    Article  Google Scholar 

  33. M. Keddam and M. Kulka, “Modeling of the kinetics of boron diffusion in dehydrated paste pack-borided AISI M2 steel based on two mathematical approaches,” Mater. Perform. Charact., 9, 303 – 314 (2020).

    CAS  Google Scholar 

  34. O. Ozdemir, M. A. Omar, M. Usta, et al., “An investigation on boriding kinetics of AISI 316 stainless steel,” Vacuum, 83, 175 – 179 (2008).

    Article  CAS  Google Scholar 

  35. C. Martini, G. Palombarini, and M. Carbucicchio, “Mechanism of thermochemical growth of iron borides on iron,” J. Mater. Sci., 39, 933 – 937 (2004).

    Article  CAS  Google Scholar 

  36. W. H. Press, B. P. Flannery, and S. A. Teukolsky, Numerical Recipes in Pascal: The Art of Scientific Computing, Cambridge University Press (1989), 759 p.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 29 – 35, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keddam, M., Jurči, P. Alternative Kinetic Model of Growth of Boride Layers on Steel AISI 316. Met Sci Heat Treat 63, 430–436 (2021). https://doi.org/10.1007/s11041-021-00707-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00707-4

Key words

Navigation